
Towards an Architecture-centric Approach to
Security Analysis

Qiong Feng∗, Rick Kazman†, Yuanfang Cai∗, Ran Mo∗, Lu Xiao∗

∗ Drexel University †University of Hawaii & SEI/CMU

Philadelphia, PA, USA Honolulu, HI, USA

{qf28, yc349, rm859, lx52}@drexel.edu kazman@hawaii.edu

Abstract—Recently there has been increased attention to the
consequences of architecture design decisions and their impact
on security. Architectural design decisions have been identified as
being critical for achieving high levels of software system security.
However the majority of this research has been anecdotal
and there are few tools or methods for understanding the
architectural relations among files, and their impact on security.
In this paper we employ a DRSpace-based analysis approach to
identify architectural design flaws and we show, via an empirical
study of 10 open source projects, that areas of a software
architecture that suffer from greater numbers of design flaws are
highly correlated with security bugs, and high levels of churn
associated with those security bugs. Finally, we show that a
specific type of design flaw—unstable interface—is correlated
with the greatest increase in software security bugs.

Keywords-software architecture; software security; design flaw

I. INTRODUCTION

Currently the vast majority of the research, methods, and

tools that address software security focus on secure coding

and testing. However, it is difficult to achieve a high level of

any system quality by focusing solely on coding and testing.

Architectural issues can overwhelm even the most heroic

coding efforts, as systems grow in size. After investigating

numerous security issue fixes, we observed that many of the

fixes made to security bugs are ad hoc: when security bug is

reported, checks and filters are added to one or a few files to

patch it; given that there is no guarantee that the fixes to these

files were complete or sufficient, it is not uncommon that the

same bugs are reopened over and over again, more and more

files are patched to fix the same problem, and similar patches

are added to more and more files.

The impact of the architectural relations among these

files on software security, as well as the impact of security

patches to architecture, were never fully understood. We

hypothesize that architectural flaws may be one of the

significant underlying causes of the difficulty of fixing security

issues, and the ad hoc patches may deteriorate software

architecture, which will incur more, and wide-spreading

security issues.

While there has been increasing interest in the consequences

of architectural design for security, thus far there has only

been anecdotal evidence that architecture actually matters. Our

research goal is to reveal the significant relationship between

architectural design and security and, in particular, to show

how architectural flaws are strongly correlated with high rates

of security bugs.

To achieve this objective we utilize an architecture-centric

analysis method and tool to analyze the relation between files

involved in architectural flaws, and files that have proven

to be most security-critical. First, we analyze a project’s

repositories—its code, its revisions, and its issues—and from

this information we calculate a set of Design Rule Spaces
(DRSpaces)—a new architecture model we recently proposed

[21]—that collectively represent the architecture of a project.

We can then automatically analyze these DRSpaces for a set

of architectural flaws, which we call hotspot patterns [14] that

are violations of proper design principles. The architectural

flaws are a form of technical debt [5]. Research into technical

debt has, until now, focused primarily on the modifiability [12]

or performance of a system. Hotspot patterns is one way to

present these architecture flaws. Second, after we detect these

hotspots we show how these hotspots highly correlated with

high rates of security bugs.

To take a concrete example, in the Apache Tomcat project,

as we will show in section V, there are a small number of files

that are consistently implicated in security bugs. Why is this?

We hypothesize that it is because these files are architecturally

connected via hotspots—in the Tomcat case the hotspots are

modularity violations and improper inheritance [14]—which

inevitably lead to bugs. And this is not a problem that is in any

way unique to Tomcat. We have observed these same types of

issues in every project that we analyzed.

As we will show in our empirical study of 10 open source

projects, we find a very high correlation in all projects

between rates of hotspots and security bugs. This is good

news for a project manager or architect, in two ways: 1) by

identifying these hotspots we can guide the project to focus

their bug-fixing, refactoring, and quality assurance activities

on the relatively small portion of the project that is causing

the vast majority of security bugs, and 2) the hotspots not

only identify where there are architectural design flaws, but

also the reasons for those flaws, which aids in analyzing and

fixing them.

The results presented in this paper is the first step

towards our objective: identify the highest security risks

in the architecture, and guide an architect or analyst

in their assurance and refactoring activities. By adopting

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.41

221

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.41

221

a strategic (architectural) approach to locating potential

security problems, we can constrain further fine-grained (more

expensive) analyses. In this way, we can both identify potential

vulnerabilities that code-based techniques alone may miss and

also reduce overall security assurance costs by providing more

global, systematic and reusable security solutions across the

entire software.

II. BACKGROUND

There are a number of threads of research that form

the foundation for the work presented here. In each of

the following subsections we will describe them and their

influence on our current research.

A. Security Analysis

The Open-Source Vulnerability Database (OSVDB)1,

classifies software vulnerabilities into six categories: Buffer

Overflow, Cross-Site Scripting (XSS), File Inclusion, Denial

of Service (DoS), Cross-Site Request Forgery (CSRF) and

SQL Injection. Substantial research has been conducted to

detect and manage these vulnerabilities. For example, static

code analysis [7] is one method that has proved effective to

detect potential buffer overflows. By examining source code

and applying certain rules (such as forbidding strcpy() in the

C language) static code analysis can reduce the incidences of

buffer overflow exploits.

Fuzzing [19] is another mature technique to reduce software

vulnerabilities by sending invalid data to a software component

to cause a fault and hence detect a vulnerability. For example, a

protocol fuzzer can send malicious packets, including a forged

IP address, to a server. In a three-way handshake to establish

a connection the server may wait for an ACK signal from

the forged IP address but will never receive it. An attacker

can exploit this vulnerability and mount a denial-of-service

attack. A protocol fuzzer can detect such a vulnerability to

prevent exploits.

Penetration testing [1] is used to detect security problems

at the system and unit level. For example, by applying

penetration testing and creating test cases from risk analyses,

security experts can detect many potential vulnerabilities such

as improperly configured firewalls, attackable ports, etc.

A disadvantage of static code analysis, however, is that it

only detects bugs in source code. It can not detect design

flaws. And a disadvantage of fuzzing and penetration testing

is that, while they may detect potential exploits, they provide

no indication as to why the code is exploitable or how

to fix it. Our approach in this paper is complementary to

these techniques: it locates architectural design flaws that are

potential sources of security bugs, and provides rationale for

why these are flaws and hence how to fix them.

B. Security and Architectural design

The relationship between security and the design of a

software architecture has been emphasized in recent years.

For example, the CWE (Common Weakness Enumeration)

1http://osvdb.org/

database describes mitigations for each class of vulnerability

and these include architectural solutions. CWEs are

generalizations of groups of CVEs (Common Vulnerabilities

and Exposures) which are publicly recorded and disseminated

security vulnerabilities. The IEEE created the “Center for

Secure Design”2, several books on security design patterns

have appeared over the past decade (e.g. [4] [9] [10]), and

published methods for architectural analysis of security have

begun to appear, e.g. [17].

While these are important contributions to our

understanding of security and its relationship to design

concepts, all of these techniques still rely heavily on the

experience and skill of the designer and analyst.

C. Design Rule Spaces

Design rules [2] are the critical architectural decisions that

decouple the rest of the system into independent modules. A

design rule is usually manifested as an interface or abstract

class. For example, if an Observer Pattern [11] is used,

then there must exist an observer interface that decouples

the subject and concrete observers into independent modules.

As long as the interface is stable, addition, removal, or

changes to concrete observers should not influence the subject.

In this case, the observer interface is considered to be a

design rule, decoupling the subject and concrete observers

into independent modules. Similarly, if a system uses a

pipe-and-filter pattern then all the filters are independent

modules, connected by pipes. Reflected in code, the abstract

Pipe class can be seen as an instance of design rule.

Since a system can use multiple design patterns, each

pattern being led by a design rule and involving a set of

files, we can consider that each pattern forms its own design

space led by design rules, which we call a Design Rule Space
(DRSpace). Thus we have proposed that an architecture should

be viewed as a set of overlapping DRSpaces [21].

A DRSpace contains a set of files and a selected set of

relations, such as inheritance, aggregation, or dependency.

These files are clustered into a design rule hierarchy (DRH)

[20] which reveals the dependencies between design rules

and independent modules. A DRH structure has the following

features: 1) the top layer of the hierarchy contains the most

influential files in the system, such as important base classes,

key interfaces, etc. These files are called the leading files.

2) Files in higher layers should not depend on files in lower

layers. 3) Files within the same layer are grouped into mutually

independent modules. If the system is designed with key

architectural design rules, then the files containing these design

rules will be among the leading files.

We represent a DRSpace using Design Structure Matrix
(DSM) [2], a square matrix whose rows and columns are

labeled with the files of the DRSpace in the same order. If

a cell in row x, column y, c : (rx, cy), is marked, it means

that the file on row x is structurally related to the file on

column y, or that they are evolutionarily coupled [5], i.e.,

2http://cybersecurity.ieee.org/center-for-secure-design/

222222

they changed together, as recorded in the revision history.

The cells along the diagonal represent self-dependency. For

example, cell (r2, c1) in Figure 1 is marked with “ex,
cl”, which means cassandra.dht.Range “extends” and “calls”

cassandra.dht.AbstractBounds. In Figure 2, cell (r1, c9) is

marked with “,118”, meaning that these two files have no

structural dependences, but changed together 118 times in

the revision history. Similarly, cell (r1, c2) is marked with

“dp,44”, meaning that cassandra.config.DatabaseDescriptor
depends on cassandra.utils.FBUtilities, and they changed

together 44 times.

Using our tool Titan [21], the user can view and manipulate

DRSpaces. The DSM in Figure 1 presents a DRSpace

clustered into a DRH with 2 layers: l1 : (rc1 − rc16) and

l2 : (rc17 − rc24). No class from layer l1 depends on any

class in layer l2, and all the modules in layer 2 are mutually

independent from each other. If a module is complex, the DRH

algorithm recursively applies clustering on it, attempting to

find independent modules. For example, although the first 16

files form one big module, our DHR algorithm further split it

into two modules, m1 : (rc1 − rc6) and m2 : (rc7 − rc16),
and m1, in turn, is split into two mutually independent

submodules: m11 : (rc1− rc5) and m12 : (rc6− rc6).

This DRSpace reveals a Strategy pattern,

in which the abstract strategy class,

rc16:cassandra.locator.AbstractReplicationStrategy, is the key

interface and the design rule. This abstract class has several

subclasses, each being a concrete strategy, including

rc18:cassandra.locator.OldNetworkTopologyStrategy,

rc19:cassandra.locator.SimpleStrategy, and

rc20:cassandra.locator.LocalStrategy. The abstract class

belongs to the first layer, and decouples the client classes,

such as rc21 and rc22, from concrete strategies. In other

words, both client classes and strategy subclasses depend

on the abstract class (the design rule), but do not depend

on each other, showing that this design follows the Liskov

Substitution Principle: concrete strategies can substitute with

each other at runtime without influencing the clients.

D. Hotspot Patterns

A DRSpace aids in identifying architectural design

flaws—the most error-prone or change-prone file

groups—because it reveals both structure and history

information simultaneously. In our prior work we observed

that there are just a few distinct types of flaws that contribute

to technical debt [5]. And we showed that these flaws occur

over and over, in both open-source and industrial software

systems [14]. Based on Baldwin and Clark’s design rule

theory [3] and fundamental software design principles, we

summarized these recurring flaws into five architecture

hotspot patterns [14], which we have named: (1) Unstable
Interface, (2) Modularity Violation, (3) Improper Inheritance,

(4) Cross-Module Cycle, (5) and Cross-Package Cycle. The

first four hotspot patterns capture relations among files while

the last one is defined at the package level. Since this paper

is focusing on the file level, Cross-Package Cycles are not

included.

Figure 2 depicts some examples of these hotspot

pattern instances3. For example, 14 classes (rc2-rc5,

rc8-rc9, rc11-rc17) co-changed with the class in rc1,

cassandra.config.DatabaseDescriptor, 10 or more times,

suggesting that rc1 is not stable. Otherwise, other classes

would only need to call its methods without co-changing with

it so many times. The fact that these classes change together

so frequently strongly suggests an architectural design flaw,

which we call an unstable interface hotspot pattern.

Cell (r1, c9) in Figure 2 exemplifies another hotspot

pattern, which we call modularity violation: this cell is

marked with “,118”, meaning that there is no structural

relation between cassandra.config.DatabaseDescriptor and

cassandra.config.CFMetaData, but they have changed together

118 times as recorded in the revision history, suggesting that

they have strong, but implicit dependencies.

Classes in rc13 and rc14 form an example of improper
inheritance. As we can see from Figure 2, the child class

cassandra.io.sstable.SSTableReader inherits from its parent

class cassandra.io.sstable.SSTable. But the parent class also

depends on the child and both classes changed together 68

times. Finally, if DRH clusters a set of files into two groups,

but they are not mutually independent, it means that these files

form a Cross-Module Cycle, the fourth type of hotspot pattern,

that prevents the two groups from being mutually independent

from each other.

Our prior study [14] showed that the files involved in these

4 types of file-level hotspots have significantly higher bug

and change rates than average files in a project, even when

normalizing for file length. Furthermore, the more hotspots a

source file participates in, the higher its rate of bugs, changes,

and churn (the number of lines of code committed to fix bugs

and make changes) [14]. While correlation does not prove

causation, this high level of correlation is consistent with

software design theory and with our interviews of architects,

suggesting that these hotspots are the root causes of technical

debt. Based on our prior work, we now describe how we detect

hotspots, and analyze the relation between these hotspots and

security bugs.

III. METHODOLOGY

As stated in the introduction, the majority of research

into the root causes of security problems has focused on

secure coding, and the majority of effort on security problem

detection has been focused on testing. We were interested

in determining whether there were any predictable effects of

architectural choices on security.

In attempting to understand the relationship between

architectural design and security flaws, we decided to examine

the correlation between security bugs and architectural flaws

(hotspots) at the file level, for two reasons: First, this allows

3An instance of a hotspot is a concrete example of a hotspot pattern, found
in a project.

223223

Fig. 1. DRSpace Clustered as a DRH by Structural Relations (cl : Call, ex: Extend)

Fig. 2. DRSpace with History Coupling Clustered as a DRH by Structural Relations (ag: Aggregate, dp: Depend, ih: Inherit)[14]

us to directly test the consequences of architectural flaws on

security for each file. Second, this approach, when applied to

bugs in general, had already revealed significant insights, as

described in section II-D. Hence, based on our prior research,

the hypotheses we formulated are as follows:

H1: The rate of security bugs affecting a source
file is strongly correlated with the number of
architectural flaws (hotspots) that file is implicated
in.

Additionally we wanted to know whether the number of

hotspots affecting a file is correlated with the churn—the

number of lines of code changed—for security-bug-fixing.

Thus we formulated hypotheses H2:

H2: The amount of security-related churn
affecting a source file is strongly correlated with the
number of hotspots that file is implicated in.

To test hypotheses H1 and H2 we extracted the source

code, revision histories, and issue databases from 10 large,

well-known open source projects: HTTP Server, PHP, Tomcat,

Avro, Camel, CXF, Derby, Hadoop, Chromium, and HBase.

However, of these projects, only the Chromium projects

consistently indicated, in their issue-tracking system, whether

224224

a bug was security-related. Three other projects, HTTP Server,

PHP, and Tomcat, noted a CVE number in their issue-tracking

system but this information was insufficient to adequately

analyze a project for security problems, as we will show.

A. Classifying Security Issues

The projects that we chose as our subjects covered a

wide variety of application domains. For example, Camel

is a integration framework based on Enterprise Integration

Patterns; CXF is a fully featured Web services framework;

Hadoop is a framework for reliable, scalable, distributed

computing; and HBase is Hadoop’s database, a distributed,

scalable, big data store.

Given that the majority of projects do not distinguish

security bugs from other kinds of bugs (with the Chromium

projects being a notable exception), we were unable to

appropriately categorize the issues from the issue-tracking

systems of Avro, Camel, CXF, Derby, Hadoop, HBase,

HTTP Server, PHP, and Tomcat as security-related or not

security-related. In fact, our analysis of over 100,000 project

repositories from Github, a popular open source project

management system, showed that only 1.5% of projects using

a labeling system for tasks made a “security” label available

to developers. What is worse, even though some open-source

projects have a “security” labeling system, not all developers

labelled these issues correctly, as they are open-source projects

and employees have great freedom in their processes. Take

PHP for example; from 2007 to 2010 there was just one issue

labeled as “security bug” per year. All of these situations made

it difficult for us to retrieve enough data directly from these

projects’ issue tracking systems. To address this problem—the

paucity of security-related data—we built a security issue

classification tool called SIM (Security Issues Miner) [8].

This classifier used natural language processing methods to

derive feature sets from the unstructured text data of an

issue-tracking system. Given this data-set we used a machine

learning classification method (Naive Bayes classification) to

determine whether each text snippet was likely to represent a

security-related topic [8].

The issue-tracking repository for Chromium included 875

issues labeled as “security”, dating from 3/10/13 to 1/9/15.

The summary statements of these issues were extracted as

positive examples of software security-related text snippets,

while the summary statements of additional Chromium issues

not tagged as “security” were used as negative examples.

The data set used in this study contained 1874 text samples

(875 security-related, 999 not security-related). The full

experimental data set was distributed into 80/20% training/test

distributions, resulting in randomized training sets containing

1499 samples and randomized test sets containing 375

samples. The performance of the SIM classifier from our

experiments can be seen in Table I.

Overall, the trained SIM classifier performed very well at

software security topic detection. The average precision (or

positive predictive value), which measures the fraction of text

snippets classified as “security” by our classifier that were

proven to be correct classifications, was between 91% and

93% in our experiments, with precision rising slightly as we

included bigram (adjacent word pair) features and trigram

(adjacent word triplet) features. This gave us confidence that

we could use the SIM classifier for further studies on the

security implications of design flaws.

B. Empirical Study

Using the SIM classifier we were able to analyze projects

that did not natively label security issues. Information about

the projects that we ended up choosing for analysis is

summarized in Table II. This shows the name and analyzed

version of each of the 10 projects. It also shows each project’s

size, in terms of number of files and lines of code (LOC)

(as determined by Understand4). Finally, for each project we

show the number of commits and bugs that we collected, from

the project’s revision control system and issue-tracking system

respectively.

Given this basis of information, we analyzed each project’s

data as follows: first, we reverse-engineered the project’s

source code to analyze all of the static relationships between

each project’s files (e.g. calling, inheritance, typing, etc.).

Second, from the reverse-engineered relationships we built a

DSM, clustered as a DRH, as described in section II-C. Third,

from the revision history we built a history DSM where the

historical co-change relationships between pairs of files are

recorded (e.g. if two files A and B change together in the

project’s revision history 10 times, then the value of cell(A,B)
is 10). Fourth, based on the output of the prior two steps—the

DSM, clustered as a DRH, and the history DSM—we ran

the hotspot detection algorithms in the Titan tool [14]. This

process detects all instances of the hotspots in all the projects.

From this information we are able to calculate the number of

hotspot instances each file is involved in. Fifth, we applied

the SIM classifier to identify all security-related bugs and

further obtain the frequency of security-related bugs each file

is involved in. The major processing steps and data flow for

our analysis are shown in Figure 3.

From above analysis steps, we were able to establish the

number of hotspot pattern instances each file is involved in

and the frequency of each file’s security-related bugs (i.e.,

those commits in the revision history that were applied to

fix an issue identified as being security-related bugs). Using

this information we calculated the average of the frequency

of security-related bugs for all files with the same value of

hotspot instances. That is, we calculated the average number

of security-related bugs for files with 0 hotspot instances, 1

hotspot instance, 2 hotspot instances, and so forth.

In this way, we could calculate several sets of data for each

project, as a means of determining the correlation between

hotspot instances and various extrinsic measures of project

quality. We calculated the number of hotspot instances per file,

and then grouped all the files in the project into those with

0 hotspot instances, 1 hotspot instance, 2 hotspot instances,

4http://scitools.com/

225225

TABLE I
RESULTS OF N-GRAM FEATURE STUDIES

Feature Space Average Precision Average Recall Average F-Measure
S1 (Unigrams, 12674 total features) 0.91± 0.026 0.89± 0.023 0.90± 0.019

S2 (Unigrams + Bigrams, 25347 total features) 0.92± 0.022 0.88± 0.022 0.90± 0.015
S3 (Unigrams + Bigrams + Trigrams, 38019 total features) 0.93± 0.017 0.88± 0.020 0.91± 0.016

TABLE II
CANDIDATE PROJECT CHARACTERISTICS

C: Commits; BI: bug issues; BF: fixed bugs
Project Version #Files KLOC #C #BI #BF

Avro 1.6.3 305 38 642 387 305

Camel 2.8.4 6678 391 7832 1494 2663

CXF 2.5.2 4535 429 5492 2429 2502

Derby 10.9.1.0 2716 634 6551 3375 1923

Hadoop 1.0.3 2102 296 6981 3847 482

HBase 0.94.0 1053 246 4969 3164 2911

Httpd 2.0.58 290 91 26790 68 844

PHP 4.4.6 1020 190 46340 51 2414

Tomcat 6.0.0 1103 158 24485 1372 3150

Chrome 17.0.963.46 18730 5,425 42406 14119 94758

Fig. 3. Tool Chain to Detect Security Hotspots

and so forth. For each group we then calculated: the average

number of bugs per file, the average number of security bugs

per file (which are a subset of the total number of bugs), the

average bug churn per file, and the average security churn per

file. Finally, we calculated the Pearson correlation coefficient

between these sets of data.

IV. RESULTS

In Table III we present correlations between the hotspot

pattern instances and several extrinsic measures of project

quality. The first result of note is that the correlations between

hotspots and bugs are consistent with our prior research results

that looked at bugs in general [14]. This strengthens our

empirical evidence that these architectural flaws are indeed

the root causes of high rates of bugs. Hence such flaws are an

important source of modularity debt.

But in addition to strengthening the empirical basis for our

prior results, we had a second, more specific research goal

here: we were interested in knowing whether there is a positive

correlation between hotspots and security bugs, and the churn

related to these bugs. The results in Table III show that there

is indeed a strong positive correlation between hotspots and

security bugs and churn. The Pearson correlation coefficient

between hotspots and security bugs ranges from a low of

0.861 (for Avro) to a high of 0.988 (for the Chrome browser),

with an average of 0.92 over these 10 projects. The Pearson

correlation coefficient between hotspots and security churn

ranges from a low of 0.349 (for Hadoop) to a high of 0.970

(for Derby), with an average of 0.79 over these 10 projects.

These results therefore provide strong empirical support for

our hypotheses H1 and H2: architectural flaws (hotspots) are

strongly correlated with high rates of security bugs and the

churn associated with security bugs.

Furthermore, we can eliminate a possible explanation

for this result: that security bugs are simply strongly

correlated with bugs in general. Prior research [6] already

showed that general bugs do not foreshadow, i.e. predict,

vulnerabilities. In a study of more than 5 years of data from

the Chromium project the correlation between pre-release

bugs and post-release vulnerabilities was found to be weak.

We found similarly weak correlations in our study of

the 10 projects in our dataset, as shown in Table IV.

Although some projects (e.g. Tomcat, PHP, Httpd) showed a

moderate correlation between these two datasets, other projects

(e.g. CXF, Chrome, Hadoop, Derby) showed far weaker

correlations. Clearly one would expect some correlation, as

vulnerabilities are themselves reported as bugs. But the lack

of a consistently high correlation between bugs in general and

security bugs in particular means that one can not reliably

predict the other, and hence that they have different root

causes.

A. Correlation between Hotspot Patterns and CVEs

We also calculated the same correlation between hotspots

and CVEs, for three projects—Httpd, PHP, and Tomcat—that

used the CVE numbers in their issue tracking database. These

results of this analysis are shown in the last three rows of

Table III.

Note that the correlations with CVEs shown in Table III are

significantly lower for two of the three projects. In just one

project—PHP—the correlation between CVEs and architecture

flaws is strong and, in fact, stronger than the correlation with

bugs determined by the SIM classifier. The question then

arises: why, at least in two of the three cases that we studied,

do we observe lower correlations between hotspot patterns and

CVEs?

We postulate two reasons: First, it appears that most

open source projects, even those few paying attention to

226226

TABLE III
HOTSPOTS CORRELATIONS WITH BUGS, BUG CHURN, SECURITY BUGS, SECURITY CHURN AND CVES

Project Bugs Bug Churn Security Bugs Security Churn CVEs|Hotspots |Hotspots |Hotspots |Hotspots |Hotspots
Avro 0.845 0.854 0.861 0.861 NA

Camel 0.957 0.964 0.958 0.919 NA
Chrome 0.921 0.908 0.988 0.826 NA

CXF 0.897 0.957 0.940 0.799 NA
Derby 0.938 0.959 0.897 0.970 NA

Hadoop 0.753 0.952 0.862 0.349 NA
HBase 0.894 0.911 0.962 0.618 NA
Httpd 0.607 0.878 0.885 0.713 0.689
PHP 0.929 0.832 0.924 0.914 0.987

Tomcat 0.901 0.830 0.921 0.902 0.776

TABLE IV
CORRELATIONS BETWEEN BUGS AND SECURITY BUGS

Project Bugs|Security Bugs
Avro 0.507

Camel 0.594
Chrome 0.438

CXF 0.474
Derby 0.272

Hadoop 0.201
HBase 0.700
Httpd 0.772
PHP 0.750

Tomcat 0.790

security and tagging CVEs, do not tag CVEs consistently.

However, the PHP project seems to be different: there

appears to be a conscientious effort to tag security

bugs using CVEs. For example, their changelog includes

CVE information for virtually every release (e.g. see

http://php.net/archive/2015.php). This rigorous attention to

CVEs is clearly part of their project culture.

The fact is that the vast majority of open source projects do

not tag security at all in their issue tracking system. And we

suspect that many projects that are using CVEs are actually

under-reporting their security bugs. For example, when we

analyzed the CVEs reported in Chrome, we found a total

of 980 issues labeled using the CVE tag. But we found

2175 issues—more than twice as many—labeled security

in the same issue-tracking system. Part of the reason for

this discrepancy is that CVEs are a subset of all security

issues. CVEs are security issues that are publicly known

and acknowledged vulnerabilities. But security bugs may

emerge and cause problems for a project before they become

publicly acknowledged. And some security bugs may be

project-specific. Furthermore, it is often the case that many

projects do not want to report security issues publicly. For

all of these reasons, CVEs appear to be a poor mechanism for

analyzing the security properties of most open source projects.

Fortunately, using the SIM recognizer, we do not depend on

project-specific labeling practices.

B. Correlations by Architecture Hotspot Pattern Type

Given these results—that the rates of hotspot pattern

instances are strongly correlated with rates of security

bugs—we were led to ask one final research question: which

types of hotspot patterns are most harmful for security? To

answer this question we calculated the average measures of

security bugs and the churn of all files. Furthermore, we

calculated the percentage increase in these measures in files

participating in hotspot patterns, as compared with average

files in each project.

For example, in the Avro project, the average file is

implicated in 0.154 security bug and 1.544 lines of code (LOC)

associated with security bugs (which we call “security churn”),

over the time period that we studied. But the average file

involved in an unstable interface hotspot pattern is implicated

in just over 0.458 security bugs and almost 2.895 LOC,

that is, triple the rate of a “normal” file. We calculated

the “SBug inc”(“Security Bug Frequency Increase rate”) as

follows: (0.458-0.154)/0.154, which is 197.4%, as shown in

the first row in Table V. In PHP the average file is implicated

in 0.425 security bugs causing 481.6 LOC security churn, over

the time period that we studied. But the average file involved

in an unstable interface hotspot is implicated in just over 1.445

security bugs and almost 1239.6 LOC. We saw similar results

in every project that we studied.

Given these values we can calculate the percentage increase

in files associated with hotspots, for each project, for

security-related bugs and churn. This calculation shows us

how much more security-vulnerable files are if they participate

in a hotspot pattern. The results for unstable interfaces,

modularity violations, improper inheritance and cross-module

cycle are shown in Table V. Note that the results for Improper

Inheritance are not given for PHP and Httpd as these projects

are largely written in C and hence seldom employ inheritance.

To better compare the increase rate of security bugs and

churn for each hotspot pattern, we show the mean and

standard deviation for all 10 projects’ security bug frequency

increase rates in Figure 4. The mean increase for unstable

interfaces is 391.7%. In general, unstable interface is most

problematic hotspot pattern. Similar results are shown for

security churn increase rates in Figure 5. A large standard

deviation means that there is a large difference of the security

bug increase rate for different projects. We hypothesize that

in some projects, such as Hbase, with lower increase rates,

code errors such as inadequate bounds checking or lack of

227227

Fig. 4. Security Bugs Frequency Increase Rate for Each Hotspot Pattern

Fig. 5. Security Churn Increase Rate for Each Hotspot Pattern

input verification contribute a large percentage of security

bugs and security churn. Since many security bugs are not

caused by architectural flaws, the security bugs in hotspots

may, on occasion, actually be lower than the average number

of security bugs in a project. Although this case appears to be

rare, we will explore the conditions under which it occurs in

our future work.

V. DISCUSSION

The results presented in section IV are unequivocal:

Participating in a hotspot is highly correlated with bugs and

changes in general (and the churn associated with fixing those

bugs and making those changes) and with security bugs and

CVEs in particular. While all hotspot types make things worse,

as we can see from Table V, unstable interfaces are particularly

problematic.

A. A Qualitative Example

To make this more concrete, let us examine a specific

example, in the Apache Tomcat project. The DRSpace of

interest is shown in Figure 6, led by the file Context.java.

Three files in this DRSpace—StandardContext.java,

ContextConfig.java, and Context.java—are involved in

an architecture flaw: improper inheritance. StandardContext
is a child of (and implements) the class Context. But the

ContextConfig class calls both the parent class Context and

the child class StandardContext, violating the well-accepted

Liskov substitution principle. This means that StandardContext
(the child class) has some functionality needed by the client,

which the parent class, Context, does not have. As a result,

ContextConfig has no option but to call both classes’ methods.

These three classes are also involved in security issues.

In the project’s revision history, ContextConfig.java changed

together with the child class 35 times, and with the parent

class, Context.java, 23 times. The parent and the child also

changed together 64 times. It is clear that—because of their

improper architectural relations—security bugs, and bugs in

general, are propagating among these files.

Furthermore, as shown in Figure 6, we found

that ContextConfig has 8 CVE-related bugs and 224

security-related bugs. It is implicated in the most CVE-related

bugs and the second-most security-related bugs of all 1103

files in Tomcat. StandardContext has 5 CVE-related bugs

(second-most in the project) and 263 security-related bugs

(the most in the project). The child class has far more

security bugs than the parent class, which is implicated in 2

CVE-related bugs and 62 security-related bugs.

But the problems, and design flaws, do not end here.

ContextConfig.java and another file—TldConfig.java (not

shown in Figure 6)—are involved in a separate architecture

flaw: a modularity violation. These two files have co-changed

together 31 times in the project’s revision history, while

they have neither static nor dynamic dependencies (e.g.,

associated with an XML file). When we examined the revision

history, we found revision messages for these co-changes

including: “Don’t silently swallow Throwables that need to be
re-thrown”, and “fix for memory leak that aligns ContextConfig
with TldConfig”. This suggests that these two files suffer

from the same problems: not properly handling exceptions

and suffering from the same memory leak, and hence they

are frequently patched together. Since these two files have no

structural dependency, new developers may neglect to patch

one file when patching the other. This particular architecture

flaw can cause additional security bugs if these vulnerabilities

are disclosed but patching is incomplete. This, in fact, appears

to be the case: as we stated above, ContextConfig.java suffers

from 8 CVE-related bugs and 224 Security-related bugs and

TldConfig.java has 1 CVE bug and 43 security-related bugs.

These cases illustrate the importance of architectural

relations: instead of being isolated, security bugs propagate

through architectural relations among files, and may impact

large numbers of files. For example, there are 115 security

bugs involving patching of ContextConfig.java and other files.

The average number of other files that changed together with

ContextConfig.java is 12.9, meaning that none of these security

patches were localized or encapsulated. These ad hoc patches,

over time, may deteriorate the architecture and the degraded

architecture will further propagate security issues. The fact that

the same set of files are involved in security issues repetitively

calls for a systematic, architecture-level solution, rather than

ad hoc patches as is commonly done today.

228228

TABLE V
AVERAGE INCREASE IN SECURITY BUGS AND SECURITY CHURN IN 4 HOTSPOT PATTERNS

Project Unstable Interface Modularity Violation Improper Inheritance Cross-Module Cycle
SBug inc SChurn inc SBug inc SChurn inc SBug inc SChurn inc SBug inc SChurn inc

Avro 197.4% 87.5% 52.7% 12.4% 213.3% 125.5% 77.7% 56.5%
Camel 475.7% 505.9% 60.8% 50.5% 377.4% 272.2% 123.7% 125.3%
CXF 1035.5% 413.5% 126.1% 142.1% 161.1% 180.6% 72.0% 115.5%

Derby 403.8% 246.7% 90.6% 30.9% 68.8% 195.5% 76.7% 118.7%
Hadoop 797.1% 824.1% 227.5% 140.6% 232.4% 348.8% 64.8% 93.7%
HBase 101.4% 259.8% 27.2% -22.8% 62.2% 233.7% 64.4% 253.5%
Tomcat 110.6% 122.2% 102.2% 96.6% 102.4% 100.1% 147.4% 166.0%

PHP 240.5% 157.4% 224.7% 185.8% NA NA 215.5% 158.8%
Httpd 191.7% 198.9% 130.1% 167.4% NA NA 134.3% 143.8%

Chrome 363.1% 148.7% 86.3% 73.9% 203.0% 131.5% 127.5% 106.4%
Average 391.7% 296.5% 112.8% 87.7% 177.6% 198.5% 110.4% 133.8%

Fig. 6. DRSpace Led by Context.java

We have seen similar kinds of architectural flaws, leading

to technical debt, in all of the projects that we have studied.

Taken together, these analyses suggest that architectural

flaws are strongly correlated with security bugs. Of course,

we realize that correlation does not prove causation. The

correlation evidence and the qualitative evidence such as the

above Tomcat example can not prove that the architectural

flaws that we detect are actually causing the high rates

of security problems. But seeing that this high level of

correlation persists across many projects, suggests that

something worthy of investigation is occurring. Even if, for

example, the correlation that we observe is due to a third

(hidden) variable—perhaps coding practices, or poor project

communications, or rapidly fluctuating requirements—our

technique will identify the areas in the architecture that are

afflicted and these can and should be made the focus of

mitigation activities such as refactoring, inspections, code

walkthroughs, or additional testing.

Furthermore, the correlations that we have observed

make intuitive sense and have been validated in our prior

empirical studies (e.g. [12], [14], [18]). If an architecture has

many hotspots—cyclic dependencies, improper inheritance,

modularity violations, and so forth—it is not surprising that

that architecture will be challenging to understand, to modify,

and to extend. Such a context “invites” bugs of all kinds,

including security bugs.

B. Towards a New Approach

What are the implications for designing for security? The

most obvious implication, is that design matters for security.

As we stated in the introduction, the vast majority of effort

and research into making systems secure goes into secure

coding and testing techniques. Design has been given far

less attention. Our research not only provides justification

for paying attention to design decisions insofar as they affect

security, but also points out specific types of flaws that degrade

security—these are a specific kind of technical debt that

we call modularity debt. Furthermore, by knowing the type

of hotspot, we can plan targeted refactoring strategies (as

described in [12] to “pay down” the modularity debt. If cycles

exist, we need to break those cycles (typically moving some

of the functionality from one file to another). If we find

modularity violations, we need to modularize the “secrets”

shared by the implicated files. If we find improper inheritance,

we typically need to move some functionality from one or

more child classes to the parent class. The point here is that

more than just red-flagging a part of the architecture, knowing

the hotspot type and the files involved helps us to construct

evidence-based refactoring strategies.

Finally, we envision that a process and tool chain such

as we have described here can be part of an architect’s

dashboard or manufacturing execution system ([13], [16])

that scans a project repository—perhaps nightly, perhaps after

each checkin—and alerts the architect to new hotspots or

areas of the architecture with increasing complexity [15] or

concentrations of hotspots.

C. Threats to Validity

There are two notable threats to validity in this study. First,

our dataset consists of just 10 projects, all of which are open

source. While it is true that this restriction to open source

projects may bias the results, we have not seen any evidence of

bias in the results of our other DRSpace-based studies of more

than 150 projects (120 open source and 30 closed-source).

That is to say, there are no discernible differences, from the

perspective of architectural complexity and hotspots, between

open- and closed-source projects.

Another threat to validity is that we used SIM to identify

229229

security issues. Clearly this has an effect on the data—the

recognizer has been shown to be 93% accurate in our test

datasets, which is excellent precision, but it still means that

about 7% of our dataset represents mis-classified issues, that

is, issues are classified as security-related when they are not.

However while such mis-classifications do reduce confidence

in the results, they should not introduce bias. There is no

reason to assume that the mis-classified issues are somehow

more or less related to architectural flaws than true issues.

VI. CONCLUSIONS AND FUTURE WORK

To reiterate our main result: files that participate in

architectural hotspots are highly correlated with bugs and

changes in general and with security bugs and CVEs in

particular, all of which contributes to high amounts of

churn, a form of technical debt. And while all hotspot types

contribute to this correlation, unstable interfaces are the most

problematic.

This strong correlation makes intuitive sense: it is not

surprising, in hindsight, that architecture flaws might lead to

security problems, but no-one has ever proven this prior to our

study. Most existing security analysis tools treat the system as

a black box or they analyze the code but not the architecture

and its myriad design decisions. Our approach, on the other

hand, focuses entirely on the design decisions, as manifested

in the relations between a system’s files. Doing this analysis

does not require access to the source code, just a knowledge

of the structural and historical relations between files. And it

can be completely automated, hence made part of continuous

monitoring and continuous assurance.

We have two major thrusts for future work in this research

area: 1) we want to develop (semi-) automated refactoring

strategies, to aid the architect in removing the accumulated

modularity debt; and 2) we want to perform longitudinal

studies of projects to determine how security problems develop

over time, how this relates to architecture problems, and how

removing these problems affects project health.

ACKNOWLEDGMENT

This work was supported in part by the National

Science Foundation of the US under grants CCF-0916891,

CCF-1065189, CCF-1116980 and DUE-0837665.

This material is based upon work funded and supported

by the Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally

funded research and development center.

[Distribution Statement A] This material has been approved

for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

DM-0003206

REFERENCES

[1] B. Arkin, S. Stender, and G. McGraw. Software penetration testing.
IEEE Security & Privacy, (1):84–87, 2005.

[2] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of
Modularity. MIT Press, 2000.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 3rd edition, 2012.

[4] C. Blackwell and H. Zhu. Cyberpatterns: Unifying Design Patterns with
Security and Attack Patterns. Springer, 2014.

[5] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, et al. Managing technical debt in
software-reliant systems. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 47–52. ACM, 2010.

[6] F. Camilo, A. Meneely, and M. Nagappan. Do bugs foreshadow
vulnerabilities? a study of the chromium project. In Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on,
pages 269–279, 2015.

[7] B. Chess and G. McGraw. Static analysis for security. IEEE Security
& Privacy, (6):76–79, 2004.

[8] C. A. Cois and R. Kazman. Natural language processing to quantify
security effort in the software development lifecycle. In Proceedings
of the 27th International Conference on Software Engineering and
Knowledge Engineering, 2015.

[9] C. R. Dougherty, K. Sayre, R. Seacord, D. Svoboda, and K. Togashi.
Secure design patterns. 2009.

[10] E. Fernandez-Buglioni. Security patterns in practice: designing secure
architectures using software patterns. John Wiley & Sons, 2013.

[11] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[12] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots
of technical debt. In Proc. 37th International Conference on Software
Engineering, May 2015.

[13] Y. C. Martin Naedele, Rick Kazman. Making the case for a
manufacturing execution system for software development. Commun.
ACM, 57(12):33–36, 2014.

[14] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The formal
definition and automatic detection of architecture smells. In Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on,
pages 51–60. IEEE, 2015.

[15] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Decoupling level:
A new metric for architectural maintenance complexity. In Proc. 38th
International Conference on Software Engineering. IEEE, 2016.

[16] M. Naedele, H.-M. Chen, R. Kazman, Y. Cai, L. Xiao, and C. V.
Silva. Manufacturing execution systems: A vision for managing software
development. Journal of Systems and Software, 101:59–68, 2015.

[17] J. Ryoo, R. Kazman, and P. Anand. Architectural analysis of security
vulnerabilities. IEEE Security & Privacy, 13(6):52–59, 2015.

[18] R. Schwanke, L. Xiao, and Y. Cai. Measuring architecture quality by
structure plus history analysis. In Proc. 35rd International Conference
on Software Engineering, pages 891–900, May 2013.

[19] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[20] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design
rule hierarchies and parallelism in software development tasks. In
Proc. 24th IEEE/ACM International Conference on Automated Software
Engineering, pages 197–208, Nov. 2009.

[21] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form of
architecture insight. In Proc. 36rd International Conference on Software
Engineering, 2014.

230230

