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ABSTRACT
Our prior work showed that the majority of error-prone
source files in a software system are architecturally con-
nected. Flawed architectural relations propagate defects
among these files and accumulate high maintenance costs
over time, just like debts accumulate interest. We model
groups of architecturally connected files that accumulate
high maintenance costs as architectural debts. To quantify
such debts, we formally define architectural debt, and show
how to automatically identify debts, quantify their mainte-
nance costs, and model these costs over time. We describe
a novel history coupling probability matrix for this purpose,
and identify architecture debts using 4 patterns of architec-
tural flaws shown to correlate with reduced software qual-
ity. We evaluate our approach on 7 large-scale open source
projects, and show that a significant portion of total project
maintenance effort is consumed by paying interest on ar-
chitectural debts. The top 5 architectural debts, covering a
small portion (8% to 25%) of each project’s error-prone files,
capture a significant portion (20% to 61%) of each project’s
maintenance effort. Finally, we show that our approach re-
veals how architectural issues evolve into debts over time.

CCS Concepts
•Software and its engineering → Software architec-
tures;

Keywords
Software Architecture, Software Quality, Technical Debt

1. INTRODUCTION
Technical Debt (TD) is a metaphor to describe the long-

term consequences of shortcuts taken in coding activities to
achieve near-term goals [7]. Debts are introduced when de-
velopers opt for “quick and dirty” solutions, but postpone
longer-term improvements. Our prior work [26] showed that
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most error-prone files in a project are architecturally con-
nected through flawed relations. These flawed relations can
propagate defects among large numbers of files, and incur in-
creasing maintenance costs over time. A flawed architecture
relation is similar to a debt in that it accumulates penalty,
in terms of maintenance costs, the same way a debt accu-
mulates interest. We call such flaws architectural debts.

Although the concept of TD has been influential, it has
until now largely been a metaphor. The differences with real
(financial) debt are crucial. A real debt always starts from
a principal, and grows with a certain interest rate. How to
quantify the principal and interest rate in software invest-
ments has been a challenge. Our goal is to advance the
understanding and management of architectural debt, a type
of technical debt, by quantifying it.

We define the concept of architectural debt (ArchDebt)
as a tuple consisting of: 1) a group of architecturally con-
nected files, and 2) a model of the maintenance cost growth
for such files. Based on this definition, we contribute an
approach to automatically locate architecture debts. Once
we locate each debt we model its growth using regression
models. Our approach to identify ArchDebt has two parts.
We first create a novel history coupling probability (HCP)
matrix to manifest the probability of changing one file when
another file is changed. Then we index file groups through
the lens of 4 patterns of prototypical architectural flaws that
have been shown to correlate with reduced software quality
[21], namely hub, anchor-submissive, anchor-dominant, and
modularity violation.

Given an ArchDebt, we quantify the maintenance costs
(approximated by bug-fixing churn) spent on the files in-
volved in the debt. From the costs incurred in each release,
we can model the growth trend using linear, logarithmic,
exponential or polynomial regression models. These models
represent coherent scenarios of stable, reducing, increasing,
and fluctuating maintenance interest rates respectively. Fi-
nally, we rank the identified architectural debts according to
the maintenance costs they have accumulated.

We have evaluated our approach using seven Apache open
source projects, and identified many instances (between 74
and 204) of ArchDebts in each project. The results show
that a significant portion (from 51% to 85%) of the main-
tenance effort in each project is consumed by paying inter-
est on these debts, and that non-trivial portions (20% to
61% ) of the maintenance effort is consumed by just five
ArchDebts, which represent a small portion of all error-
prone files. Our evaluation also revealed that about half of
the identified debts fit linear regression models, indicating a
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steady increase in the penalty that these debts incur. About
1/3, 1/10, and less than 1/10 of all debts fit polynomial,
logarithmic, and exponential models respectively, indicating
the interest rate trends of these debts can vary drastically.
Finally, we qualitatively analyzed the design problems be-
hind debts, and how these evolve over time.

This approach will not only enable an analyst to precisely
locate architectural debts, but also rank and prioritize them,
so that informed decisions can be made on if, where, and how
to refactor. Although the ArchDebt detection and modeling
approaches we propose only work retrospectively when the
penalty has already accumulated, this approach can be used
to monitor the formation of a debt [23], and thus prevent it
from growing early in the software development process.

2. BACKGROUND
We now introduce the key concepts our work is based on.
Design Rule Space. In our prior work [26] we proposed

a novel architectural model—Design Rule Space(DRSpace)—
based on the Baldwin and Clark’s design rules [2]. Build-
ing upon existing definitions of software architecture [3], we
characterize a software architecture as a set of overlapping
DRSpaces, each reflecting a unique aspect of the architec-
ture. Each DRSpace is a subset of a system’s source files and
some kind of relationships (dependencies) among these files.
Each DRSpace has one or more “leading file(s)”, which all
other files in the DRSpace depend on, directly or indirectly.
The leading files are usually the files with architectural im-
portance, such as interfaces or abstract classes, which we
call Design Rules. The relations within a DRSpace may be
structural—such as “Implement”, “Extend”, “Call”—or re-
lations may be based on history coupling between source
files—indicating the number of times two files changed to-
gether as recorded in the project’s revision history.

There are numerous DRSpaces in any non-trivial soft-
ware system, e.g., each dependency type forms a DRSpace:
files connected by“Extend”and“Inherit”relationships form
an inheritance DRSpace, and files that are coupled in the
project’s revision history form an evolution DRSpace. We
created an architecture root detection algorithm that com-
putes the intersection between DRSpaces and the project’s
“error space”—the set of error-prone files in a system [26].
We showed that the majority of the error-prone files are
concentrated in just a few DRSpaces, suggesting that these
error-prone files are not islands–they are architecturally con-
nected [26]. Furthermore, we showed that these DRSpaces
frequently contain architectural issues (flaws) that, we claim,
are the root causes of error-proneness.

Design Structure Matrix (DSM). We use a DSM [2]
to represent a DRSpace. Each element in the DSM is a
source file, and each cell represents the relationships between
the file on the row and the file on the column. For exam-
ple, Figure 5 is a DRSpace with leading file ColumnParent.
Each cell shows the structural dependencies — “implement”,
or “dp” — between the file on the row and the file on the
column, followed by the conditional probability of change
propagation. In the original DRSpace [26], we used the
number of times two files changed together in the project’s
revision history to represent their history dependency. In
this paper, we replace this count with a probability. For
example, cell[6,2] contains “Implement”, meaning that the
file on row 6, CassandraServer, implements the interface
on row 2, Cassandra; cell[2,6] contains “48%”, meaning that

when Cassandra changes, there is a 48% probability that
CassandraServer will change with it.

Architecture Issues. Our recent work [21] defined, im-
plemented, and validated an algorithm for detecting recur-
ring architectural issues in software systems, which we call
hotspot patterns, including: 1) unstable interface, where an
influential file changes frequently with its dependents in the
revision history; 2) modularity violation, where structurally
decoupled files frequently change together in the project’s re-
vision history; 3) unhealthy inheritance, where a super-class
depends on its sub-class or where a client class depends on
both a super-class and its sub-class; 4) cyclic dependency,
where a set of files forms a dependency cycle. In the 9
projects we examined, we observed a strong correlation be-
tween the number of flaws a file has and: 1) the number
of bugs reported and fixed in it, 2) the number of changes
made to it, and 3) the amount of effort spent on it (in terms
of committed lines of code to fix bugs and to make changes).

3. DEFINITION AND IDENTIFICATION
In this section, we define architectural debt (ArchDebt)

and present an ArchDebt identification approach.

3.1 ArchDebt Definition
We formally define the software architecture of a system,

implemented at release r, as a set of overlapping DRSpaces:

SoftArchr = {DRSpace1, DRSpace2, ..., DRSpacen} (1)

where n is the number of DRSpaces, each revealing a dif-
ferent aspect of the architecture. For example, each depen-
dency type can form a distinct DRSpace [26]. We define an
Architectural Debt (ArchDebt) as a group of architecturally
connected files that incur high maintenance costs over time
due to their flawed connections, as follows:

ArchDebt =< FileSetSequence,DebtModel > (2)

The first element, FileSetSequence, is a sequence of file
groups, each extracted from a different project release:

FileSetSequence = (FileSet1, F ileSet2..., F ileSetm) (3)

where m is the number of releases that ArchDebt impacts,
m ≤ R, the number of project releases. FileSetr, r = 1...m
is a connected file group in release r. The number of files in
each FileSet may vary in different releases.

The second element, DebtModel is a formula capturing
the growth, i.e. interest rate, of the ArchDebt, in the form
of maintenance costs for FileSetSequence.

3.2 ArchDebt Identification
Given this definition of ArchDebt, we first identify FileSet−

Sequence, and then build a DebtModel to capture the “in-
terest rate” based on the costs FileSetSequence has in-
curred. There are numerous DRSpaces in each release, and
numerous debt candidates (file groups) in each DRSpace.
We illustrate our process of searching for a FileSetSequence
on analogy with searching for web pages on the internet,
consisting of the following steps as shown in Figure 1:

1) Crawling: this step collects a subset of DRSpaces from
each SoftArchr, r from 1 to R, similar to crawling and
collecting web pages.

2) Indexing: this step identifies (indexes) a specific file
group, FileSet, from each DRSpace selected in the first
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Figure 1: Approach Framework

step, then locates sequences of related FileSets in different
releases as a FileSetSequence.

3) Modeling: we measure the maintenance costs incurred
by each sequence of FileSetr. An ArchDebt is defined as a
FileSetSequence whose costs increase over time.

4) Ranking: we rank the severity of each ArchDebt ac-
cording to the amount of maintenance costs they have accu-
mulated in the project’s evolution history.

3.2.1 Crawling: Selecting DRSpaces
We first define the set of error-prone files in a particular

release r as an error space: ErrorSpacer={f1, f2, ..., fn},
where file fi, i = 1...n, was revised to fix bugs at least once
from release 1 to release r. According to this definition:
ErrorSpacer is a subset of ErrorSpacer+1. For each release
r, we select a set of DRSpaces from SoftArchr, each led by
a file in ErrorSpacer, and form a SelectedDRSpace set as
the output of Crawling:

SelectedDRSpacer = Crawling(SoftArchr, ErrorSpacer)
(4)

Each DRSpace in SelectedDRSpacer is led by an error-
prone file in ErrorSpacer, and contains other files that de-
pend on the leading error-prone file. If there are n files in
ErrorSpacer, there are n DRSpaces in SelectedDRSpacer.

3.2.2 Indexing: Identify ArchDebt Candidates
Next we find the FileSetSequences that are debt candi-

dates. Files in such a sequence must have changed together
in the project’s revision history. We first calculate a his-
tory coupling model—HCP matrix—and then we filter file
groups using 4 indexing patterns.

HCP Matrix.
In our prior work [26], we used a DSM to model history

coupling : each cell in the DSM displays the number of times
two files changed together. To manifest how a change to
a file influences other files, we propose a new model: the
history coupling probability (HCP) matrix. Although
each column and row in a HCP still represents a file, we use
each cell to record the conditional probability of changing the
file on the column, if the file on the row has been changed,
i.e., the odds of changes propagating from file to file.
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Figure 2: Generate HPC Matrix

Figure 2 shows an example of the creation of a HCP. Part
1 shows 4 files A, B, C, and D, that change in 4 com-
mits: Commit1{A,B} (Commit1 changes A and B), Com-
mit2{A,B}, Commit3{B,D}, and Commit4{A,C}. First, we
compute the pair-wise conditional change probabilities for
any pair of files. For example, the probability of changing
file A, given that file C has changed, denoted by Prob{A|C},
is the number of times A and C change in the same com-
mits divided by the total number of changes to C. Similarly,
Prob{C|A} is the number of times A and C change in the
same commits divided by the total number of changes to A.
Hence, Prob{A|C} is 1/1, indicating that A always changes
with C, and Prob{C|A} is 1/3, indicating a probability of
1/3 that C changes with A. In this relation, we label C
as dominant and A as submissive because Prob{A|C} >
Prob{C|A}. We compute the probabilities for every pair of
files and get the graph in part 2 of Figure 2.

As shown in part 3, we compute the N-Transitive-Closure
of the graph in part 2 to identify history dependencies be-
tween files that change in distinct but potentially related
commits. The conditional probabilities between files with-
out direct connections are the multiplication of the probabil-
ities on the transitive links. For example, files B and C never
change in the same commits, but they change with A in
Commit1 and Commit4. Hence, there are transitive history
connections between B and C. Prob{B|C} is Prob{B|A}*
Prob{A|C}=0.7*0.3=0.21, and Prob{C|B} is Prob{C|A}*
Prob{A|B}=1*0.7=0.7. We only keep links with probabili-
ties of at least 0.3 to avoid keeping weak connections. In case
there are multiple paths between two files, we keep just the
highest probability. Part 4 shows the N-Transitive-Closure,
stored in an adjacency matrix called a HCP matrix. For each
release r of a project, we compute a HPC matrix (HPCr),
consisting of files in ErrorSpacer, from the bug-fixing revi-
sion history between release 1 to release r.

Indexing Patterns.
Now we compute the interaction between SelectedDRSpacesr

and HCPr to find FileSetr from each release. We observe
that, in most cases, even though the number of files in a
FileSet may vary in different releases, they are always con-



nected to at least one file over all releases. For example, if
more child classes are defined to extend a parent class over
time, the group of files connected to the parent class grows.
We thus call this one special file the Anchor file of the group,
denoted as file a. We thus define FileSetr as:

FileSetr = {a,Mr|Mr = {mi : i from 1 to n}|
∀mi ∈Mr,mi architecturally connected with a in release r}

(5)
where FileSectr ∈ FileSetSequence, a is the anchor file,
and the files contained in Mr may change with release r.
We call Mr the member files of a in release r.

We also define two boolean expressions to describe the
relationships between two files (x and y) in release r: Sr(x→
y) and Hr(x→ y). Sr(x→ y) means y structurally depends
on x in release r. Hr(x→ y) means x is dominant and y is
submissive in their co-changes between release 1 to release
r. In HCPr, HCPr[x, y] is the probability of changing y,
given x has changed. If HCP [x, y] > HCPr[y, x], then x
is dominant and y is submissive. HCP [x, y] = HCPr[y, x]
means x and y are equally dominant. Formally:

In release r,

Sr(x→ y) is true if y ∈ DRSpacer x, otherwise it is false

Hr(x→ y) is true if HCP [x, y] >= HCPr[y, x]

∧HCP [x, y] 6= 0, otherwise it is false
(6)

For any pair of a and m in a FileSetr, we identify 4 re-
lationships: Sr(a → m), Sr(m → a), Hr(a → m), and
Hr(m→ a). Each relationship could be either true or false.
We enumerated all 16 combinations of these 4 relationships.
The 4 combinations with Hr(a→ m) and Hr(a→ m) false
are irrelevant to our analysis (as we need history to measure
debt). From the remaining 12 possible combinations, we de-
fined 4 indexing patterns—Hub, Anchor Submissive, Anchor
Dominant, Modularity Violation. Each pattern corresponds
to prototypical architectural issues that proved to correlate
with reduced software quality [21].

Given any anchor file a ∈ ErrorSpacer, we can calculate
its FileSetr a using SelectedDRSpacer and HCPr through
the lens of the 4 indexing patterns:

Hub—the anchor file and each member have structural
dependencies in both directions and history dominance in at
least one direction. The anchor is an architectural hub for
its members. This pattern corresponds to cyclic dependency,
unhealthy inheritance (if the anchor file is a super-class or
interface class), and unstable interface (if the anchor file has
many dependents). Informally such structures are referred
to as “spaghetti code”, or “big ball of mud”. A FileSetr a

with anchor file a in release r that matches a hub pattern is
denoted by HBFileSetr a and is calculated as:

HBFileSetr a = IndexHB(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m) ∧ Sr(m→ a)

∧ (Hr(a→ m) ∨Hr(m→ a))}
(7)

Figure 3 is a Hub FileSet for the PDFBox project, an-
chored by PDAnnotation. The dark grey cell represents the
anchor file (cell[4,4] for PDAnnotation). The cells showing
the historical and structural relationships between member
files and the anchor file are in lighter grey. In this HBFile-
Set, the anchor file structurally depends on each member

1 2 3 4 5 6 7
1 PDA*Line (1) ,100% ,100% dp,100% ,100% ,100% ,100%
2 PDA*SquareCircle ,100% (2) ,100% dp,100% ,100% ,100% ,100%
3 PDA*FileAtt* ,100% ,100% (3) dp,100% ,100% ,100% ,100%
4 PDA* dp,50% dp,50% dp,50% (4) dp,50% dp,50% dp,50%
5 PDA*Text ,100% ,100% ,100% dp,100% (5) ,100% ,100%
6 PDA*Link ,100% ,100% ,100% Extend,dp,100% ,100% (6) ,100%
7 PDA*Widget ,100% ,100% ,100% Extend,dp,100% ,100% ,100% (7)

A* stands for Annotation

Figure 3: Hub

1 2 3 4 5 6 7 8
1 AbstractType (1)
2 UUIDSerializer ,100% (2) ,50% ,100% ,50%
3 UUIDType ext,dp,33% dp, (3) ,33% ,50%
4 AbstractCell dp,50% (4)
5 TypeCast dp,33% ,33% (5) ,33% ,33%
6 IntegerSerializer ,100% ,100% ,50% (6) ,50%
7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Figure 4: Anchor Submissive

file, and each member file also structurally depends on the
anchor file. When the anchor file changes, each member file
has a 50% probability of changing as well. When a member
file changes, the anchor file always changes with it. A HB-
FileSet is potentially problematic because the anchor file,
like a hub, is strongly coupled with every member file both
structurally and historically.

Anchor Submissive—each member file structurally de-
pends on the anchor file, but each member historically dom-
inates the anchor. This pattern corresponds to an unstable
interface, where the interface is submissive in changes. An
Anchor Submissive FileSet with anchor a in release rt is:

ASFileSetr a = IndexAS(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m)∧
⇁ Sr(m→ a) ∧Hr(m→ a)

(8)
Figure 4 shows an ASFileSet with anchor AbstractType

in Cassandra. Each member file directly or indirectly de-
pends on the anchor file, but when the member files change,
the anchor file changes with each of them, with historical
probabilities of 33% to 100%. A ASFileSet is problematic
because history dominance is in the opposite direction to
the structural influences: the anchor should influence the
member files, not the other way around.

Anchor Dominant—each member file structurally de-
pends on the anchor file and the anchor file historically
dominates each member file. This pattern corresponds to
the other type of unstable interface, where the interface is
dominant in changes. An Anchor Dominant FileSet with
anchor a in release rt can be calculated as:

ADFileSetr a = IndexAD(a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr, Sr(a→ m)∧
⇁ Sr(m→ a) ∧Hr(a→ m)}

(9)
Figure 5 shows an ADFileSet calculated using anchor

ColumnParent in Cassandra. Each member file (from row 2
to row 6) structurally depends on (cell[2 to 6:1]) the anchor
file (row 1), and when the anchor file changes, the member
files change as well with probabilities from 41% to 100%
(cell[1:2 to 6]). A ADFileSet presents potential problems
where the anchor file is unstable and propagates changes to



1 2 3 4 5 6
1 ColumnParent (1) ,100% ,50% ,41% ,50% ,100%
2 Cassandra dp, (2) ,48%
3 CliClient dp, dp, (3)
4 Column*Reader dp, dp, (4)
5 ThriftValidation dp, (5)
6 CassandraServer dp, Implement, dp, (6)

Figure 5: Anchor Dominant

1 2 3 4 5 6 7 8
1 JMXETPEMBean (1) ,100% ,44% ,50% ,100% ,100% ,50%
2 DebuggableTPExecutor (2) ,31%
3 StorageService (3) dp, dp,Use,
4 ColumnFamilyStore dp, (4)
5 MessagingService dp, (5) dp,
6 NodeProbe ,44% dp, (6)
7 StatusLogger ,50% dp,50%dp, ,50% (7)
8 JMXCTPExecutor ,50% ,100% ,31% ,100% ,50% ,50% ,50% (8)

   

Figure 6: Modularity Violation

member files that structurally depend on it.
Modularity Violation—there are no structure depen-

dencies between the anchor and any member, however they
historically couple with each other. In a modularity violation
the anchor and member files share assumptions (“secrets”)
that are not represented in any structural connection. A
MV FileSet with anchor a in release r is calculated as:

MV FileSetr a = IndexMV (a, SelectedDRSpacer, HCPr)

= {a,Mr|∀m ∈Mr,⇁ Sr(a→ m)∧⇁ Sr(m→ a)

∧ (Hr(m→ a) ∨Hr(a→ m))}
(10)

Figure 6 is a MV FileSet with anchor JMXCTPExecutor

(row 8) in Cassandra. The anchor file, on the bottom of the
matrix, is structurally isolated from the member files. How-
ever, when the anchor file changes, there are historically
31% to 100% probabilities that the member files change as
well, and when the member file JMXETPEMBean (on row 1)
changes, the anchor file has a 50% chance to change with it.
This pattern identifies potential problems where the anchor
file and the member files share common assumptions, with-
out explicit structural connections, and these assumptions
are manifested by historical co-change relationships.

Identify ArchDebtCandidates.
For each release r, we use each a in ErrorSpacer as the

anchor file to calculate a FileSet for each of the 4 pat-
terns: HB, AS, AD, and MV FileSetr a. The FileSet-
Sequence in the Hub pattern with anchor file a is denoted by
HBFileSetSequencea. Similarly, for anchor a, we can identify
AS, AD, and MV FileSetSequencea. Using any error-prone
file as the anchor, we can identify 4 FileSetSequences, each
of which is an ArchDebtCandidate.

As a result, for each a ∈ ErrorSpacer and for each release
r , we can exhaustively detect 4*| ∪n

r=1 ErrorSpacer| candi-
dates, which equals 4*|ErrorSpacen| because ErrorSpacen
is a super set of all ErrorSpaces in earlier releases.

3.2.3 Modeling: Build Regression Model
Now that we have identified the FileSetSequences, the

candidates of ArchDebt, we: (1) measure maintenance costs
incurred by each FileSet within a FileSetSequence, and (2)

DebtModel(T) = 510.49ln(T) + 875 
R² = 0.9351 
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formulate a DebtModel to capture cost variation.

Measure ArchDebtCandidates.
From each FileSetSequence, we first exclude any singleton

FileSetr, that is, a set containing just 1 file since this can
not involve architecture problems. After that, we define the
age of a FileSetSequence as the number of FileSets in it
after singleton FileSets are filtered out. Then, for each
FileSetr, we measure the maintenance effort, denoted by
Effort F ileSetr, that it consumes by the end of release r.
For any file f ∈ FileSetr, we approximate its maintenance
costs as the amount of bug-fixing churn expended on it by
the end of release r. We denote the maintenance cost for file
f by release r as ErrorChurnr f . Effort F ileSetr is the
sum of maintenance costs spent on each file in the set:

Effort F ileSetr =
∑

∀f∈FileSetr
ErrorChurnr f

(11)
To qualify as a debt, first a FileSetSequence should have

long-lasting impacts. This can be evaluated using the age
of FileSetSequence. Second, FileSetSequence should require
ever-increasing maintenance effort. Suppose a software sys-
tem has n releases. Let FileSetf and FileSetl be the first
and last element in FileSetSequence. A FileSetSequence is
identified as a real debt if it satisfies the following condi-
tions:{

age >= n/c;

Effort F ileSetl > Effort F ileSetf .

where c is a tunable parameter. Here, we use c=2, mean-
ing that FileSetSequence influences at least half of the re-
leases. Otherwise, the candidate is not a meaningful debt,
at least not yet. The second condition requires that the
maintenance costs on FileSetSequence increase over time.

Formulate DebtModel.
For each FileSetSequence identified as a real debt, we se-

lect a regression model as its DebtModel to describe the
growing trend (the interest rate) of maintenance costs over
time. We use four types of regression models: linear, loga-
rithmic, exponential, and polynomial (up to degree 10). Fig-
ure 7 shows typical examples of these 4 models. Each model
represents a coherent scenario. In a linear model (part 1 of
Figure 7), the penalties of a debt increase at a stable rate in
each version. In a logarithmic model (part 2), the penalties
of a debt increase more slowly over time (e.g., when devel-



opers refactor a group of files, they become easier change,
so the interest rate decreases over time). In an exponential
model (part 3), the penalties of a debt increase at ever-faster
rates over time (e.g., the structure of a tangled group of files
worsens, often in the early stages of a project, before any-
one worries about TD). In a polynomial model (part 4), the
penalties of a debt fluctuate over the releases.

We calculate the maintenance costs—Effort F ileSetr for
each FileSetr in a FileSetSequence using equation 11. The
Effort F ileSetr of all FileSetr in a FileSetSequence form
an array that we call Effort Array. Effort Array[i] =
Effort F ileSetr, where FileSetr is the ith element of File-
SetSequence. We define an integer array T [i] = r, where
r is the release number of the ith element in FileSetSe-
quence. Each release r is numbered by its order in the re-
lease in history. In the DebtModel of a FileSetSequence,
Effort Array is the independent value and T is the de-
pendent value. We created a ModelSelector algorithm to
select a regression model for the relationship between T and
Effort Array. The formula and R2 of the regression model
are returned as DebtModel:

DebtModel = ModelSelector(EffortArray, T ) (12)

We define a global parameter R2
thresh (R2 threshold) for

ModelSelector. R2
thresh ranges from 0 to 1; the higher the

value, the stricter Effort Array and T fit the model. Our
ModelSelector algorithm first tries to fit the Effort Array
and T to a linear regression model. If the R2

Lin of the linear
model reaches the threshold R2

thresh, it returns the linear
model. If not, it builds both logarithmic and exponential
models, and computes their R2 values. If the R2 values of
both models reach R2

thresh, ModelSelector returns the model
that gives a higher R2. Otherwise, it returns the model
that reaches the threshold. If the debt fits neither with
R2 >= R2

thresh, it tries polynomial models of degrees up
to 10. A polynomial model where R2

poly >= R2
thresh or the

degree reaches 10, whichever is satisfied first, is returned.
In the ModelSelector algorithm, we give higher priority

to linear, logarithmic, and exponential models over poly-
nomial models. We do not simply pick the best fit (i.e.,
the model with highest R2). The reason is that the linear,
logarithmic, and exponential models present three general
types of penalty interest rate: stable, decreasing, and in-
creasing. The polynomial model, however, catches minor
fluctuations of the penalty trend, most likely a result of noise
due to extraneous factors. For example, the debt in part
1 of Figure 7, intuitively a linear model (DebtModel(r) =
857 ∗ r + 1070 with R2 of 0.98), can fit into a polynomial
model DebtModel(r) = −2 ∗ r6 + 59 ∗ r5 − 680 ∗ r4 + 3874 ∗
r3 − 11342 ∗ r2 + 16538 ∗ r − 6466, with a higher R2 (0.99).
The polynomial model fits better (higher R2), but the lin-
ear model is preferred. As long as a debt penalty generally
(R2 >= R2

thresh, where e.g. R2
thresh is 0.8) fits into a linear,

logarithmic or exponential model, we choose those models.
For each FileSetSequence, we identify its DebtModel. This

completes our ArchDebt identification.

3.2.4 Ranking: Identify High-maintenance ArchDebt
Not all architectural debts have the same severity—the

maintenance costs they incur. Debts with higher mainte-
nance costs deserve more attention. We rank all the identi-
fied architectural debts according to their cumulative main-
tenance cost as follows. We define a pair pf = <f , ErrorChurnf>,

where f is an error-prone file, ErrorChurnf is the mainte-
nance costs for f , approximated by bug-fixing churn on f .
Let EffortMap be the set of pf , such that ∀f ∈ ErrorSpacen
(n is the latest release), there exists a pf ∈ EffortMap. Ef-
fortMap is one of the inputs to the ranking algorithm. The
other input is the identified ArchDebts.

RankedDebts = ranking(ArchDebts, EffortMap)
(13)

In the ranking algorithm, we rank the importance of each
ArchDebt according to EffortMap iteratively. In each it-
eration, we select maxArchDebt that consumes the largest
portion of effort for files in EffortMap from ArchDebts. The
effort for duplicate files is excluded, and the iteration ter-
minates when all ArchDebts are ranked.1 The top debts re-
turned consume the largest maintenance effort, and deserve
more attention and higher priority for refactoring.

4. EVALUATION
To evaluate the effectiveness of our approach, we investi-

gate the following research question:
RQ: Whether the file groups identified in ArchDebts
generate and grow significant amount of maintenance
costs? That is, are they true and significant debts?
If the identified file groups only consume a small portion of
overall maintenance effort, then they do not deserve much
attention. Similarly, if the identified file groups cover a large
portion of the system itself, it is not surprising if they also
consume the majority of maintenance effort. In both cases,
we cannot claim that they are debts worthy of attention.

4.1 Subjects
We chose 7 Apache open source projects as our evalua-

tion subjects. These projects differ in scale, application do-
main, length of history, and many other project character-
istics. They are: Camel—a integration framework based on
Enterprise Integration Patterns; Cassandra—a distributed
DBMS; CXF—a Web services framework; Hadoop—a frame-
work for reliable, scalable, distributed computing; HBase—
the Hadoop distributed, scalable, big data store; PDFBox—
a library for working with PDF documents; and Wicket—a
component-based web application framework. A summary
of these projects is given in Table 1. The second column
is the start to end time and the total number of months
(in parentheses) for each project. The third column “#R”
shows the number of releases selected per project. We se-
lected releases to ensure that the time interval between two
releases is approximately 6 months. The column “#Cmt” is
the number of commits made over the selected history. The
column “#Iss” is the number of bug reports, extracted from
the project’s bug-tracking system. The last column shows
the size range, measured as the number of files in the first
and the last selected release.

4.2 Analysis Results
To answer our research question, we measured the amount

of maintenance effort spent on the ArchDebts we identified.
Since we can not directly measure the amount of effort in
working hours or budgets, we use error-fixing churn as an
approximation: the number of lines of code modified and
committed to fix bugs.

1For pseudo code of all algorithms, see: https://www.cs.
drexel.edu/˜lx52/ArchDebt.html

https://www.cs.drexel.edu/~lx52/ArchDebt.html
https://www.cs.drexel.edu/~lx52/ArchDebt.html


Table 1: Subject Projects

Subject Length of history (#Mon) #R #Cmt #Iss #Files

Camel 7/2008 to 7/2014 (72) 12 14563 2790 1838 to 9866
Cassandra 9/2009 to 11/2014 (62) 10 14673 4731 311 to 1337
CXF 12/2007 to 5/2014 (77) 13 8937 3854 2861 to 5509
Hadoop 8/2009 to 8/2014 (60) 9 8253 5443 1307 to 5488
HBase 12/2009 to 5/2014 (53) 9 6718 6280 560 to 2055
PDFBox 8/2009 to 9/2014 (62) 12 2005 1857 447 to 791
Wicket 6/2007 to 1/2015 (92) 15 8309 3557 1879 to 3081
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Figure 8: Debt Churn Consumption (HBase)

We use HBase as an example to illustrate our observations.
Figure 8 shows the percentage of maintenance effort associ-
ated with the files in FileSets of all identified ArchDebts
in HBase. The x-axis is the number (from 1 to 28) of iden-
tified architectural debts. The y-axis is the accumulated
percentage of maintenance effort associated with the top x
ArchDebts. Each line represents the percentage of each type
of debt. This figure depicts, from bottom to top, you can
see: Hub, Anchor-Submissive, Anchor-Dominant, and Mod-
ularity Violation debts respectively. The line on the top is
the total percentage of the 4 types of debts. The values of
the top line are not simply the sum of the values of the 4
types because different types of debts may share some files.
Thus we make the following observations in HBase.

(1) Architectural debts consume a significant per-
centage (85%) of the total project maintenance ef-
fort. A significant portion of the maintenance effort is spent
on paying interest on related groups of files. If they can iden-
tify such debts early, a project can save significant effort by
paying down the debts via refactoring [15]. As the number
of debts increases, the total does not reach 100% because
not all errors are architecturally connected. Occasionally,
developers introduce errors that can be fixed in isolation.

(2) The top few architectural debts consume a
large percentage of maintenance effort. The top 5
Modularity Violation debts in HBase consume 61% of to-
tal effort, wherease all Modularity Violation debts consume
82% of total effort. Similar observations hold for Anchor-
Submissive, Anchor-Dominant, and Hub debts. The lines
flatten as the number of debts increases, indicating that
most of the effort concentrates in the top few debts. This
means that instead of reviewing all identified debts, project
leaders only need to focus on the top few.

(3) Modularity Violation debt is the most com-
mon and expensive debt. Hub debts consume the least
percentage of effort, while Anchor-Dominant and Anchor-
Submissive take similar percentages. We can see that the
line for Modularity Violation is close to the line for the sum
of all types. This is because Modularity Violation debts

involve the files in other debts as well.
We made consistent observations from all 7 projects, as

summarized in Table 2. Column “All Debts Ch%” shows
that, for all 7 projects, from 51% to 85% of the total main-
tenance effort is consumed by architectural debts. And, a
large percentage (31% to 50%) of the effort is consumed
by the top 5 Modularity Violation debts (shown in sub col-
umn “Ch%” under “Modularity Vio” ). Modularity Violation
debts impact the largest number of files and consume the
greatest effort, Hub debts consume the least, while Anchor-
Submissive and Anchor-Dominant rotate their orders.

If a debt contains a large number of files, it is not surpris-
ing that they take a large percentage of effort. We observed,
however, that (4) the top 5 architectural debts con-
tain only a small number of files, but consume a
large amount of the total project effort. We compare
the number of files in the top 5 architectural debts versus
the percentage of effort they take. For example, in table 2,
column “Modularity Vio” under “Top 5 Debts” shows that,
in Camel, there are 206 files (13% of all the error-prone files)
in the top 5 ModularityViolation debts, and these 206 files
consume 32% of the total project bug-fixing effort. Similarly,
in Camel, the top 5 Anchor Submissive, Anchor Dominant,
and Hub debts contain only 1%, 4%, and 2% of the error-
prone files, but consume 7%, 16%, and 5% of the total effort
respectively. From the column “All 4 types” under “Top 5
Debts”, we can observe that, for all the projects, the top
5 architectural debts contain from only 11% to 32% of the
error-prone files, but consume 27% to 49% of the total effort.
The average ratio of percentage of effort to the percentage
of files in the top 5 debts is 2.

Finally, we analyze the file size (in lines of code) of the
debts we identified. Much research has shown that file size
correlates with error rates and churn. We would like to know
that the debts identified by our approach are not just a set
of large files. To show this we counted the LOC of the files
in the top 5 debts, and observed that the sizes of these files
are randomly distributed. Figure 9, for example, shows the
file size distribution of the top 5 Modularity Violation debts
in Cassandra. The x-axis is the range of file size: 10% means
the top 10% largest files, 10-20% means files in the 10-20%
range in LOC, and so forth. The y-axis is the percentage
of files in the top 5 debts that belong to each size range.
For example, 22% of the files in top 5 debts are in the top
10% largest files, and 11% of the files are in the range of
90-100% range (that is, the smallest files). The top 5 debts
do contain a non-trivial number of large files (22% from the
top 10% size range), consistent with other studies showing
that large files tend to be problematic. But Figure 9 shows
that the top 5 debts contain files in all size ranges.

In summary, we can claim that the architectural debts
identified by our approach are truly debts that account for
a large amount (from 51% to 85%) of maintenance effort.
Most (31% to 61%) of the maintenance effort concentrates
in the top 5 architectural debts, which contain only a small
percentage (13% to 25%) of the project’s files.

5. DISCUSSION
We now discuss which model best describes the interest

rate of an ArchDebt and illustrate how our approach helps
to understand and monitor the evolution of ArchDebts.



Table 2: Top 5 Debt:#Files vs Churn

Projects
All Debts Top 5 Debts

Ch%
All 4 types Modularity Vio Anchor Sub. Anchor Dom. Hub
Fls Ch% Fls Ch% Fls Ch% Fls Ch% Fls Ch%

Camel 59% 230(15%) 35% 206(13%) 32% 20(1%) 7% 60(4%) 16% 40(2%) 5%
Cassandra 72% 273(28%) 57% 196(20%) 50% 72(7%) 28% 33(3%) 32% 26(3%) 16%
CXF 56% 200(11%) 27% 136(8%) 20% 70(4%) 6% 22(1%) 10% 12(1%) 3%
Hadoop 51% 145(25%) 44% 118(20%) 42% 45(8%) 22% 10(2%) 16% 10(2%) 6%
HBase 85% 349(30%) 67% 290(25%) 61% 87(7%) 15% 36(3%) 27% 23(2%) 13%
PDFBox 67% 133(32%) 49% 107(25%) 45% 35(8%) 12% 30(7%) 26% 17(4%) 10%
Wicket 62% 295(22%) 38% 214(16%) 31% 130(10%) 11% 35(3%) 13% 14(1%) 7%
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Figure 9: Top 5 Debts File Size Distribution (Cassandra)

5.1 The Interest Rate of ArchDebt
For each ArchDebt, we search for a suitable regression

model to capture its interest rate, as introduced in 3.2.3,
using R2

thresh of 0.75 and 0.8 respectively. The results are
reported in Table 3. The first column is project name. The
second column is the number of instances of ArchDebt iden-
tified in a project. The third and forth columns are model
distributions for R2

thresh of 0.75 and 0.8 respectively.
When R2

thresh=0.75, in all the projects, about half (46%
to 65%) of the debts fit a linear regression model (with R2

>= 0.75). For other debts where a linear model doesn’t fit,
a small percentage fits either a logarithmic (4% to 22%) or
exponential (0% to 7%) model (with R2 >= 0.75), and a
polynomial model fits 25% to 41% of the identified debts.

When R2
thresh=0.8, the models are less noise-tolerant. We

can see that linear model is still common (36% to 62%) for
all projects. But a small portion of debts, from 6% (HBase,
31% minus 25%) to 18% (PDFBox, 51% minus 33%), can
no longer fit into linear, logarithmic, or exponential models,
but fit a polynomial model.

In summary, when R2
thresh is 0.75, the linear model is most

common—about half of the debts fit into it. This indicates
that half of ArchDebts accumulate maintenance interest at
a constant rate. Only a small portion of debts accumulate
interest at a faster (less than 7% in exponential) or slower
(less than 22% in logarithmic) rate. About 1/3 of the iden-
tified debts accumulate costs with a more fluctuating rate,
which is captured by a polynomial model. More ArchDebts
fit into a polynomial model as R2

thresh increases.

5.2 Architectural Debt Evolution
We showed, in section 4, that the top 5 debts consume a

large amount of effort. We manually inspected the evolution
of these debts, and now illustrate how architectural flaws
evolve into debts over time. As an example, consider the
top Hub debt with anchor file ProcessorDef (referred to

Table 3: Debt Costs Model Distribution

Project #Ds
R2

threshold = 0.75 R2
threshold = 0.8

Lin Log Exp Poly Lin Log Exp Poly

Camel 199 52% 19% 0% 30% 39% 20% 2% 39%
Cassandra 180 61% 7% 2% 30% 53% 6% 3% 39%
CXF 189 56% 12% 1% 32% 45% 10% 4% 41%
Hadoop 74 46% 7% 7% 41% 36% 8% 3% 53%
Hbase 204 65% 7% 2% 25% 62% 4% 2% 31%
PDFBox 85 59% 4% 5% 33% 39% 1% 9% 51%
Wicket 153 46% 22% 1% 30% 38% 17% 1% 44%

as PDef in the following) in Camel (Figure 10). We have
provided 3 snapshots of this debt—in release 2.0.0 (age 1),
release 2.2.0 (age 2), and release 2.12.4 (age 11)—to show
its evolution. Snapshots from age 3 to 10 are similar to age
11. “Ext” and “Impl” stand for “extend” and “implement”,
“dp” denotes all other types of structural dependencies.

In release 2.0.0, PDef forms a hub with 10 member files:
3 files are its subclasses, 7 files are its general dependents,
and PDef structurally depends on all of them. Note that
in this snapshot, all files, except InterceptStrategy, de-
pend on RouteContext (column 5). The 11 files in this hub
structurally form a strongly connected graph. According to
the revision history, PDef changes with all member files
with probabilities from 50% to 100% (column 1). The de-
pendents (on rows 5 to 11) of PDef are highly coupled with
each other. This is problematic in 3 ways: 1) the parent class
PDef depends on each subclass and each dependent class
(unhealthy inheritance [21]); 2) the parent class is unstable
and often changes with its subclasses and dependent classes
(unstable interface [21]). 3) RouteContext forms cyclic de-
pendencies with 9 files (cycles). Without fixing these flaws,
we expect the maintenance costs of this group to grow.

In release 2.2.0, the impacts of this hub have enlarged—
PDef has 3 more subclasses and 6 more general dependents,
and it depends on each of them as well. Each newly involved
file also depends on RouteContext (column 13). The revi-
sion history shows that PDef changes with its subclasses
and dependents with probabilities of 33% to 100%. Also,
the subclasses and dependents (rows 5 to 11) of PDef are
highly coupled with each other—changing any of them is
likely to trigger changes to the rest. In following releases,
the hub grows further. Up to release 2.12.4, PDef has 9
subclasses and 18 general dependents—the size of the hub
tripled compared to the start, and, as always, PDef depends
on each of them. In addition, 6 of the 18 general dependents
(rows 11 to 16) of PDef also become its grandchildren. The
inheritance tree has increased in width and depth. The re-
vision history shows PDef still changes with its dependents
with probabilities from 33% to 100%. The files in this snap-
shot are tightly coupled with each other, and so changing
any file is likely to trigger changes to others.



1 2 3 4 5 6 7 8 9 10 11
1 ProcessorDef (1) dp dp dp dp dp dp dp dp dp dp
2 LoadBalanceDef Ext,dp,100% (2) dp,
3 ChoiceDef Ext,dp,100% (3) dp, ,100%
4 RollbackDef Ext,dp,100% (4) dp,
5 RouteContext dp,67% (5) ,33% ,67% ,33% ,33% dp,33%
6 MarshalDef dp,100% dp,67% (6) ,100% ,100%,50% ,100%
7 PolicyDef dp,67% dp,44% ,33% (7) ,33% ,33% ,33%
8 TryDef dp,100% ,100% dp, (8)
9 UnmarshalDef dp,100% dp,67% ,100% ,100% (9) ,50% ,100%

10 Error*Ref dp,50% dp, ,33% (10)
11 InterceptStrategy dp,50% ,33% ,50% ,50% ,50% (11)

(a) R-2.0.0, Age 1, #File 11, Churn 392

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ProcessorDef (1) dp, dp dp, dp, dp, dp, dp, dp, dp, dp, dp dp dp, dp, dp, dp, dp, dp, dp,
2 ChoiceDef Ext,dp,100% (2) dp ,100%
3 LoadBalanceDef Ext,dp,100% (3) dp
4 RollbackDef Ext,dp,100% (4) dp ,33%
5 OnCompletionDef Ext,dp,67% (5) ,33% ,33% ,33% ,33% ,33% dp ,33% ,33%
6 RouteDef Ext,dp,33% (6) dp dp, ,33%
7 OnExceptionDef Ext,dp,100% ,100% (7) ,33% ,50% ,33% ,33% dp ,100% ,33%
8 Channel dp,50% ,50% (8) ,50% ,50% ,50% dp ,50% dp
9 Def dp,44% ,33% Implt,dp,33% (9) ,33% ,33% dp ,33% dp

10 ToDef dp,100% ,33% ,100% ,33% ,100% ,100% (10) ,100% dp,40% ,40% ,100%
11 ThreadsDef dp,100% ,33% ,100% ,33% ,100% ,100% ,100% (11) dp,40% ,40% ,100%
12 RecipientListDef dp,100% (12) dp
13 RouteContext dp,60% dp, (13) ,50% dp
14 MarshalDef dp,100% ,50% dp,40% (14) ,100% ,100% ,50% ,100%
15 PolicyDef dp,75% dp (15)
16 TryDef dp,100% ,100% dp (16)
17 UnmarshalDef dp,100% ,50% dp,40% ,100% ,100% (17) ,50% ,100%
18 Error*Ref dp,40% dp, dp, dp (18)
19 MulticastDef dp,100% ,50% ,50% ,50% ,50% ,50% dp (19)
20 InterceptStrategy dp,50% ,50% ,50% ,50% ,50% (20)

(b) R-2.2.0, Age 2, #File 20, Churn 771
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 ProcessorDef (1) dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp dp
2 ExpressionNode Ext,dp,60% (2) ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,30
3 CatchDef Ext,dp,40% dp,40% (3) ,40% ,40% ,40% ,40% dp, ,40% dp, dp,60% ,30 ,40%
4 ChoiceDef Ext,dp,67% dp, (4) dp,33% dp, ,33%
5 LoadBalanceDef Ext,dp,50% (5)
6 RecipientListDef Ext,dp,50% dp, (6) ,33% ,33% ,33% dp, dp, ,50%
7 WireTapDef Ext,dp,33% ,67% (7) ,67% ,33% ,44% ,33% ,33% ,33% ,33% dp,33% ,33% dp,33% ,67%
8 AggregateDef Ext,dp,33% ,33% ,33% ,33% ,33% (8) ,50% ,67% ,33% ,50% ,50% ,33% dp, ,33% dp, ,33% ,50%
9 ResequenceDef Ext,dp,50% ,50% ,50% ,75% (9) ,75% ,50% ,50% dp, ,50% ,37

10 OnCompletionDef Ext,dp,44% dp, ,44% ,33% (10) dp, ,33% dp, ,33% dp, ,33%
11 LoopDef dp,100% Ext,dp,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% (11) ,100% ,100% ,100% ,100% ,33% ,100% ,100% ,100% ,100% ,100% ,100% ,100% ,100% ,100%
12 ThrottleDef dp,40% Ext,dp,67% ,33% ,33% ,33% ,67% ,33% ,67% ,33% (12) ,33% ,67% ,67% dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
13 I*ConsumerDef dp,50% Ext,dp,50% ,50% ,75% ,50% ,50% (13) ,50% dp, ,50% ,50%
14 WhenDef dp,100% Ext,dp,50% ,50% ,100% ,50% ,50% ,50% ,50% (14) ,50% ,50% ,37
15 SplitDef dp,50% Ext,dp,50% ,50% ,50% ,75% ,50% ,75% ,50% ,50% (15) ,50% dp, ,50% dp, ,50% ,75%
16 DelayDef dp,33% Ext,dp,44% ,33% ,33% ,33% ,67% ,33% ,67% ,33% ,67% ,33% ,67% (16) dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
17 Processor*Helper dp,33% dp, dp, dp, (17) dp, dp, dp, dp,
18 ThreadsDef dp,33% ,33% ,50% ,33% ,33% ,33% dp, (18) dp, ,50%
19 OtherwiseDef dp,100% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% (19) ,50% ,50% ,50% ,50% ,50% ,50% ,50%
20 RouteContext ,43% ,33% ,33% ,33% ,33% (20) ,33% ,33% ,33% dp
21 PolicyDef dp,80% ,40% (21) dp,100%
22 TryDef dp,60% ,40% dp,60% ,40% ,40% ,40% ,40% ,40% dp, ,40% dp, (22) ,30 dp,40%
23 TransactedDef dp,56% dp, ,71 (23)
24 PipelineDef dp,100% ,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% ,100% ,100% ,100% ,100% ,100% ,33% ,100% ,100% ,100% ,100% ,100% (24) ,100% ,100% ,100%
25 SamplingDef dp,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% (25) ,33% ,33%
26 MulticastDef dp,43% ,43% ,43% ,43% ,43% dp, ,43% dp, (26)
27 FinallyDef dp,60% ,50% ,100% ,40% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% dp,100% ,50% ,50% ,50% ,50% (27)
28 InterceptStrategy ,50% ,50% ,50% (28)

(c) R-2.12.4, Age 11, #File 28, Churn 2134

Figure 10: Camel Hub Debt Evolution—Anchor ProcessorDefinition

The maintenance costs spent on this debt fit a linear re-
gression model: DebtModel(rt) = 158.75 ∗ rt + 509.35 with
R2 = 0.89. This means that, in every release, developers
contribute 158.75 more lines of code to fix errors in the hub
anchored by PDef . Although this model can only be ob-
tained after the costs and penalty have accumulated, one
could use our approach to detect architecture flaw patterns
at any point (as described in [21]), monitor how file groups
grow, monitor the formation of debts, and prevent signifi-
cant costs by investing in proper refactorings [15].

6. RELATED WORK
Technical Debt. Since Cunninghan [7] coined the term,

TD has referred to the consequences of short-cuts taken in
software projects to achieve near-term goals. During the
past decade, TD has drawn increasing attention [6, 10, 25].

Li et al. [19] conducted a mapping study on different
categories of TD based on related literature published be-
tween 1992 and 2013. They classified ten coarse-grained
TD types according to the phases of the software devel-
opment life-cycle, such as requirements, architectural, and
code. They found that Code TD is the most well-studied
type, and Architectural TD has also received significant at-
tention. They further categorized Architectural TD into
seven sub-categories, including architectural smells [22], ar-

chitectural anti-patterns [13][24], complex architectural be-
havioral dependencies [5], violations of good architectural
practices [8], architectural compliance issues [16], system-
level structural quality issues, and all others. TD can com-
promise both functional and quality requirements, such as
performance, security, usability, and modifiability.

Alves et al. [1] organized 13 types of TD and their key in-
dicators, including Architectural TD. They described Archi-
tectural TD as “problems encountered in software architec-
ture”, and referred to issues in software architecture, struc-
ture dependencies/analysis, and modularity violations as in-
dicators of Architectural TD. Their work focused on build-
ing an ontology of TD rather than focusing on resolving a
specific type of TD.

Everton et al. [9] proposed an approach to identify dif-
ferent types of “self-admitted” TD in software projects, by
reviewing the comments left by developers. They identified
five types of self-admitted TD: design, requirement, defect,
test, and documentation TD. According to their study, the
most common types of TD are design and requirement. But
as the name “self-admitted” suggests, the TD identified in
their work was limited to ones that the developers are aware
of. There are forms of TD introduced unwittingly by devel-
opers, such as the architecture debts we have identified.

Martini et al. [20] conceptualized two patterns of Archi-



tectural TD: contagious debt and vicious circle. Contagious
debt leads to ripple effects in projects. Vicious circle refers
to a more severe contagious debt where the ripple effects
form a loop. Their work has two limitations. First, it in-
tensively relies on interviewing developers to identify these
problems. As stated above, it is possible the developers are
not aware of all the TD existing in their project. Further-
more, this approach is labor-intensive and relies highly on
the expertise of the analyst. Second, this only identifies two
anti-patterns, and these overlap with each other.

Given the substantial research literature, it is surprising
that definitions of the types of TD are still largely informal.
In fact, the identification of TD relies heavily on interviews
or reviewing developers’ revision comments, and these are
only problems that the developers are aware of. Many ques-
tions in TD research remain open. For example, how to
precisely define the forms of TD, how to automatically iden-
tify these forms of TD, and how to measure TD: its costs
and consequences.

Co-change Analysis An analysis of co-changes in soft-
ware projects at the package, class, method, and statement
level has been used to gain insight into problems in software
development. Zimmermann et al. [28] applied data mining
on revision histories to predict likely changes given a change
that has already occurred. Kagdi et al. [14] proposed an
approach to calculate the change impact scope of a software
entity by combining structural coupling, reflected in source
code, and change coupling, recorded in the project’s revision
history. Their approach improved the accuracy of change
impact analysis, compared with either technique used inde-
pendently. Gethers et al. [11] proposed an integrated ap-
proach to identify the impact set of a change request (e.g. a
bug ticket in bug-tracking database), based on data mining
of past source code commits and run-time traces.

Analysis of co-changes has also been used in reverse-engi-
neering. Beck et al. [4] used co-change analysis to compute
clusterings. They used an Evolutionary Class Dependency
Graph to represent co-change coupling. They calculated
three types of clusterings using (1) only co-change coupling,
(2) only structure dependencies, and (3) a combination of
the two. They found that clustering based on the combined
approach yielded the best results.

Co-change analysis has also been applied to investigate
problems in software projects, such as bugs and code smells.
Kouroshfar et al. [17, 18] investigated how co-changes im-
pact bugs. They found that co-changes dispersed across dif-
ferent sub-systems are more likely to result in bugs than
localized co-changes. Girba et al. [12] used co-change pat-
terns to identify hidden dependencies between different parts
of software system that reveal bad smells. They defined
history patterns in three granularity levels: method level,
class level, and package level. These patterns can reveal
code smells, such as similar code, cloned code, and short-
gun surgery. Code smells have also been used as a heuristic
for approximating TD. Zazworka et al. [27] reported that
not all TD approximated by code smells will lead to high
maintenance costs, and not all TD have code smells.

7. LIMITATIONS AND THREATS
We now briefly discuss our limitations and threats to va-

lidity. First, since we have only examined 7 projects and
all of these are Apache projects, we can not guarantee that
our results will generalize to other projects with different

cultures and organizational policies. Second, our approach
has the limitation that it relies on revision history to iden-
tify architectural debt. For projects without enough history
data, our approach can still identify groups of files with the
potential to become architectural debt. The building of a
DebtModel relies on having adequate history data. But our
pattern matching approach is still feasible for projects with
short history. We plan to evaluate the effectiveness of our
approach on projects without enough history in our future
work. Third, our approach relies on mining error-prone files
from a project’s revision history and bug tracking data. We
use the bug report ID that developers enter into commits
to locate error-prone files. The availability and accuracy of
such information heavily depend on the project’s protocols.
This is both a limitation and threat to validity to our ap-
proach. Finally, we can’t guarantee that error-fixing churn
is the best proxy measure for effort. In our future work, we
plan to explore more effort proxies, and we are collaborating
with an industry project that records actual effort data, and
we plan to compare this with our proxy measures of effort.

8. CONCLUSION
To quantify and manage architectural TD, we formally de-

fined the concept of architectural debt, and then described an
approach to automatically identify such debts, to measure
their maintenance consequences, and to model their growth.
We proposed a novel history model—the HCP matrix—to
approximate the probabilities of change propagation among
files, and defined 4 patterns based on the HCP matrix to
capture problematic architectural connections among files.

We evaluated our approach on 7 large-scale Apache open
source projects and the results showed that a significant por-
tion (51% to 85%) of overall maintenance effort was con-
sumed by paying interest on architectural debts. This sug-
gests that projects could save a significant amount of main-
tenance costs if they can discover these debts early, and pay
them down by refactoring. The top 5 architectural debts in
each of the 7 projects consume a non-trivial portion (20%
to 61%) of each project’s maintenance effort, but they only
contain a small portion of each project’s error-prone files
(8% to 25%). Thus investing in refactoring small groups
of files could reap large benefits. Finally, we quantified the
growing trend of maintenance costs for each debt. About
half of the debts grow linearly, meaning that developers pay
a consistently increasing penalty on these debts in every re-
lease. And using DSMs, we qualitatively illustrated how
architectural issues connect more files, incur more mainte-
nance costs, and evolve into debts over time.
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