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ABSTRACT
In this paper, we report our experiences of applying three com-
plementary automated software architecture analysis techniques,
supported by a tool suite, called DV8, to 8 industrial projects within
a large company. DV8 includes two state-of-the-art architecture-
level maintainability metrics—Decoupling Level and Propagation
Cost, an architecture flaw detection tool, and an architecture root
detection tool. We collected development process data from the
project teams as input to these tools, reported the results back
to the practitioners, and followed up with telephone conferences
and interviews. Our experiences revealed that the metrics scores,
quantitative debt analysis, and architecture flaw visualization can
effectively bridge the gap between management and development,
help them decide if, when, and where to refactor. In particular, the
metrics scores, compared against industrial benchmarks, faithfully
reflected the practitioners’ intuitions about the maintainability of
their projects, and enabled them to better understand the main-
tainability relative to other projects internal to their company, and
to other industrial products. The automatically detected architec-
ture flaws and roots enabled the practitioners to precisely pinpoint,
visualize, and quantify the “hotspots" within the systems that are
responsible for high maintenance costs. Except for the two smallest
projects for which both architecture metrics indicated high main-
tainability, all other projects are planning or have already begun
refactorings to address the problems detected by our analyses. We
are working on further automating the tool chain, and transforming
the analysis suite into deployable services accessible by all projects
within the company.

CCS CONCEPTS
• Software and its engineering→ Software architectures;
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1 INTRODUCTION
Although software measurement and source code analysis tech-
niques have been researched for decades, making project decisions
that have significant economic impact—especially decisions about
technical debt and refactoring—is still a challenge for management
and development teams. Development teams feel the increasing
challenges of maintenance as the architecture degrades, and of-
ten have intuitions about where the problems are, but have diffi-
culty pinpointing which files are problematic and why. It is still
a challenge for the development teams to quantify their projects’
maintenance problems—their debts—as a way of justifying the in-
vestment in refactoring. In this paper, we present our experience
of applying three automated architecture analysis and quantifica-
tion techniques, supported by a tool suite, called DV81, on eight
large-scale projects within ABB.

The first technique is measuring architecture maintainability
using a pair of architecture-level maintainability metrics: decoupling
level (DL) [16] and propagation cost (PC) [13]. DLmeasures howwell
a software system is decoupled into small and independent modules
that can be developed and maintained in parallel. PC measures how
tightly the files in a software system are coupled, which indicates
the probability that changes to one file propagate to other files. Both
metrics were proposed recently by different researchers. Applying
both to the same projects could help us evaluate which metric is
more effective and reliable, and if and how they can reveal different
aspects of the same project.

The second technique is architecture flaw detection. Mo et al. [15]
formally defined a set of architecture flaws that incur high mainte-
nance costs. Files involved in such flaws suffer from one or more
architecture design mistakes; these flaws have significant impact on
the bug-proneness and change-proneness of the system. To make
1https://www.archdia.net/products-and-services/
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the penalty incurred by these flaws explicit, we quantify the number
of bugs and changes, as well as the bug churn and change churn, for
each flaw using project history data. The users can also visualize
each flaw as a design structure matrix (DSM) [1, 23].

The third technique we applied is architecture root analysis pro-
posed by Xiao et al. [24]. They proposed the notion of a design
rule space (DRSpace)—a set of architecturally connected files to
implement a pattern, a feature, or other important system concerns.
They also proposed the concept of architecture roots—design rule
spaces that cluster together the most error-prone files in the system.
As reported by Xiao et al. [24], five architecture roots in a project
almost always cover 50% to 90% of the most error-prone files within
a project.

In ABB we assembled and integrated these tools to create our
automated architecture analysis framework. Using this framework,
we analyzed eight projects within the company. These projects
are developed at multiple locations (India, USA, and Switzerland)
and differ in their ages, domains, and sizes. Our study had the
following steps: first, the development teams of ABB granted us
access to their code repository, from which we collected file de-
pendency information, history data, and work items. Using these
data as input, we ran DV8, which automatically generated metrics
scores, and visualizable architecture flaws and roots along with
supporting quantitative data. Finally, we combined the output from
these tools into a report for each project, and presented these to the
development teams. After we ensured that the development teams
understood the reports, we conducted a phone or email interview
with each team to collect their feedback and, most importantly,
to see if these techniques helped them to determine if, when, and
where to refactor.

Our experiences have shown that the two metrics—PC and DL—
can faithfully reflect the extent to which a project is experiencing
maintenance difficulty. The complementary nature of PC and DL
can provide useful insights as we will show. The architecture flaw
detector can effectively pinpoint which files are suffering from
which specific design problems. This visualization and quantifi-
cation has effectively bridged the gap between management and
development teams. Except for the two smallest projects, containing
just a few hundreds of files each (and the highest metrics scores),
all other projects are now undergoing major refactorings to address
the detected flaws. Finally, the feedback we received regarding root
analysis is divided: some teams found that it provided an effective
way to detect architectural problems since they only needed to
examine five groups of related files. But other teams found that a
root can be misleading when there are highly influential utility files
that may distort their results.

2 RESEARCH QUESTIONS
Our goal in employing these analysis techniques within ABB was
to investigate the following research questions:

• RQ1: does DV8 help to close the gap between management
and development? That is, does it help them to decide if,
when, and where to refactor?

• RQ2: does DV8 help practitioners understand the maintain-
ability of their systems relative to other projects internal to

the company, and relative to a more broad-based benchmark
suite?

• RQ3: does DV8 help developers pinpoint the hotspots of their
systems—that is, the groups of files with severe design flaws?

We investigated these questions by interviewing the develop-
ment teams, analyzing their experiences with the provided tools,
and soliciting feedback. This interview process also allowed us to
understand the limitations of DV8.

3 PROCEDURE
In this section, we present the projects where we applied the archi-
tecture analysis framework, the data needed to run the tool suite,
and the overall structure of the analysis framework as shown in
Figure 1.

Subjects. Table 1 presents the eight projects that we analyzed.
The “Lanд.” column shows the main language used. The “#Files”
column shows the number of files in the project. For Proj_CH and
Proj_EC, we measured multiple releases of each, so we listed the
range in the number of files in these projects. The column “#Com."
presents the number of commits over the time period studied. The
column “Period" shows the period of time we analyzed for each
project. The column “#P" presents the number of people who made
commits during this time period. Consider Proj_BM as an example:
it contains 371 source files, and the history studied is from April
2015 to July 2017. It was maintained by 8 full-time developers, who
made 536 commits. The real project and file names are anonymized
in this paper.

Table 1: Studied Projects

Lang. #Files #Com. Period #P
Proj_EO C# 144 953 05/15-01/17 8
Proj_BM C/C++ 371 536 04/15-07/17 8
Proj_CH C/C++ 6,242-6,948 2,568 01/11-01/17 28
Proj_EP C# 1,541 1,668 03/15-04/17 21
Proj_SS C/C++ 15,333 6,400 02/13-10/16 30
Proj_OP C/C++ 7,754 39,074 01/11-01/17 86
Proj_CO C# 491 360 03/16-04/17 16
Proj_EC C/C++ 2,493-4,125 1,043 08/13-02/16 N/A

Data needed for the tool suite (DV8). Once a development
team agreed to participate in our study, they granted us access to
their code repository, and the specific version(s) they wanted to
analyze. From the repository, we extracted three types of data as
the input to DV8, as shown in Figure 1:

(1) The dependency information among source files. Given a project
source code, we first used Understand2, a commercial static analysis
tool, to generate a file-level dependency report in XML format for
each project version to be analyzed.

(2) The revision history of the project. We extracted the revision
history of a project from the Team Foundation Server3 (TFS) system
used in ABB. TFS records each commit as a changeset and provides
console commands through which we can export the changeset
into a plain text file. This file records, for a specified time period,
which files were changed together in which commit, and howmany
lines of code were changed in each file.

2https://scitools.com/
3https://www.visualstudio.com/tfs/
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(3) Bug records. TFS also has a work item tracking system where
the developers can record bugs or other tasks, such as adding a new
feature. When a developer makes a commit, he/she can link the
commit (changeset) to a work item. From the work item tracking
system, we can download all the bug reports and their associated
changesets in XML format.

The XML files recording dependency information among source
files, the plain text file recording all changesets in the revision
history, and the XML file recording bug fixes were the input needed
by the automated tool suite, as shown in Figure 1.

Automated architecture analysis framework. This frame-
work contains the following components:

(1) SDSM generator. The representation used by DV8 is a design
structure matrix (DSM), first proposed by Baldwin and Clark [1].
We will elaborate the model using examples in Section V. The
SDSM (short for structure DSM) generator transforms a XML file
containing file dependency information into a DSM.

(2) HDSM generator. This component transfers the plain text file
recording changeset information into a DSM format, which we call
a HDSM (short for history DSM), so that both structural and history
information can be processed simultaneously.

(3) DL & PC calculators. These two calculators take a SDSM
as input and output the decoupling level and propagation cost
scores respectively, calculated using the file dependencies output
by Understand.

(4) Flaw detector. This component takes both a SDSM and a
HDSM as input, and generates a set of new DSM files, each of
which contains an architecture flaw (which we will describe in
Section V), as defined in Mo et al.’s work [15]. Each flaw DSM can
also be exported into a spreadsheet for further analysis and broad
dissemination.

(5) Root detector. This component takes a SDSM, a HDSM, and the
changeset file as input, and generates a set of DSMs, each containing
an architecture root [24] capturing the most change-prone or bug-
prone files in the system. The change-proneness or bug-proneness
of files can be ranked by the number of changes/bugs to any given
file, which can be calculated from the project’s changeset file. A
DSM containing the root can also be exported into a spreadsheet.

(6) Flaw cost calculator. This component extends the flaw detec-
tor component by calculating the number of LOC, the number of
changes, and the number of bug fixes incurred by each flaw. It takes
the output of the flaw detector as input, and uses the changeset file
and bug records to calculate the maintenance costs related to each
flaw. It outputs the results into a spreadsheet, as we will elaborate
later.

(7) Debt calculator. Inspired by the experiences reported in [12],
this component calculates the expected number of additional bugs,
changes, and churn incurred by a root or a flaw, as compared to
system averages. The output of this component is also a spreadsheet.

(8) Report generator. This component automatically puts together
a report by summarizing the output of the other components, in-
cluding the metrics scores, the summarization of flaws and roots,
and the costs and debts. We can manually add project-specific prose,
as needed, to the report before sending it back to the development
team, along with supporting data. For each project, the report con-
tains its basic facts, DL and PC values with the corresponding
percentile rankings, detected flaws and roots with the involved

files, and the costs and debts. We then present the report and the
associated data to the development team to help them properly
interpret the results.

Of all the 8 components in DV8, the first five were obtained from
the researchers who originally created these technologies. The final
three components are extensions newly developed for ABB. All
these 8 components have been integrated into our framework to
automate the architecture analysis.

After the development team had time (at least one week) to fully
digest the report, we set up a follow-up interview to evaluate the
effectiveness of the tools and their results. We asked the architects
and project managers a set of pre-defined interview questions, as
explained in section 7, so that we could confidently answer the
research questions posed in section 2.

Figure 1: Analysis Framework

4 ARCHITECTURE MEASUREMENT
We first measured the maintainability of each project using the
DL and PC calculators as shown in Figure 1, and compared each
project’s scores with an industrial benchmark suite, so that both
the management and development team can understand how their
project compares to others in industry. For projects where multiple
releases were available to us, we also calculated the variation of
DL and PC over time to see if the trend matched the practitioners’
intuitions. Next we first introduce these two metrics, and then
present the results.

4.1 Two Architecture-level Metrics
Decoupling Level (DL) was proposed by Mo et al. [16] to measure
how well a software system is decoupled into independent modules.
The theoretical foundation behind DL is Baldwin and Clark’s design
rule theory [1]: the more independent, small, and active modules
there are, the higher option values the system can produce. Based
on this rationale, their algorithm first clusters all source files into a
design rule hierarchy (DRH) [5, 23], a hierarchical structure with
two features: (1) files in lower layers only depend on files in higher
layers; (2) files within the same layer are grouped into mutually
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independent modules. Based on DRH, DL is calculated as follows:
the more independent modules there are, the higher the DL; the
larger a module is, the lower its DL. For a module that influences
others, the more dependents it has, the lower its DL.

Propagation Cost (PC) was proposed by MacCormack et al [13]
to measure how tightly coupled a system is. The calculation of a
system’s PC value is based on a design rule matrix [1], whose rows
and columns are labeled with the files in the same order. Based on
this matrix, their algorithm first represents the direct dependency
relations among files in a system, and then calculates its transitive
closure to add indirect dependencies to the matrix until no more
dependencies can be added. A nonempty cell in the matrix indicates
an indirect or direct dependency between the file on the row and the
file on the column. Given the final matrix containing all direct and
indirect dependencies, PC is calculated as the number of nonempty
cells divided by the total number of cells. PC has been used to
analyze large projects with similar domains and sizes [13].

Mo et al. calculated the PC and DL of 129 projects [16], and
published the data as an industrial benchmark. Figure 2 depicts
the cumulative distributions of benchmark DL and PC values. The
red solid line represents the probability that a random DL value
is less than or equal to a specific value. For example, the mark
“80th, 74.9%” on the red solid line indicates that 80% of the projects
in the benchmark data have DL scores less than or equal to 74.9%.
The blud dashed line represents the probability that a random PC
value is larger than or equal to a specific value. For example, the
mark“80th, 7.7%” at the blue dashed line indicates that 80% of the
projects in the benchmark data have PC scores larger than or equal
to 7.7%. The figure shows that DL and PC complement with each
other: a high DL and a low PC indicate better modularity and
maintainability, and a low DL is usually associated with high PC,
indicating lower level of modularity and maintainability.

Figure 2: Cumulative probability distribution of DL and PC

4.2 Measuring and Ranking of Maintainability
For each project, we first calculated its DL and PC scores, then calcu-
lated its percentile ranking as compared with the benchmark data.
For example, the DL and PC of Proj_EO are 78% and 6% respectively,
ranked the 85th among the 129 projects for both metrics, mean-
ing that its modular structure is better than 85% of the benchmark

projects. Table 2 summarizes the DL and PC scores for the latest
version of each project, showing their metric values, percentile
rankings, and the number of files.

The row for Proj_EP shows that its DL is 72%, better than 74% of
all benchmark projects. The PC of this project is 7%, lower (better)
than 83% of the benchmark projects. As we can see from the table,
in general, a higher DL is associated with a lower PC and their
percentile rankings are largely consistent, differing by less than 10
percentile points. There are exceptions, however, such as Proj_CH:
its DL is 76% (ranking 81st of all projects), but its PC is 16%, only
ranking the 54th.

Considering that this project has 6,948 files, changes to one
file may affect—directly or indirectly—approximately 1,000 files,
suggesting that this part of the system will suffer from considerable
maintenance difficulty, even though the majority of the system
is reasonably decoupled. This observation was confirmed by the
development team. As we discuss later, using architecture flaw
and root analyses, we were able to pinpoint the file groups, and
their architecture flaws, that are responsible for this maintenance
difficulty.

For two of the eight projects the product organization requested
that we calculate the DL and PC values of multiple snapshots to
assess whether the architecture is degrading or not, and if the assess-
ment is consistent with the practitioners’ intuitions. For Proj_CH,
the DL of its latest release was 76%. Since then, the system has been
changed considerably. The development team asked us to measure
a more recent working version and obtained a DL of 64%, showing
that the architecture has degraded since the last release. Its architect
confirmed that the degradation was expected as the release was still
in alpha testing after implementing a major technology improve-
ment. The project team plans to continue working on refactoring
the code to improve the architecture.

We also calculated the scores for six releases of Proj_EC. All
these releases have very low DL scores (26% - 30%) and high PC
scores (60% - 68%). The practitioners confirmed that this project has
always been difficult to maintain: a seemingly simple change often
caused a large number of unexpected changes involving multiple
files. For the latest version of Proj_EC, its DL is only 28%, ranking
in the 5th percentile, and is the worst of all eight projects. One
practitioner commented: “... revising even two lines of code would
require double digit man-months", indicating that the project has
been extremely difficult to understand and maintain.

We reported our results to the architect of each project and asked
whether DL and PC analyses faithfully reflect the maintainability
of their projects. All the architects confirmed that the DL and PC
scores indeed reflected their knowledge of the software architecture,
and further helped them to present the architecture quality issues
to management in a quantitative way. All four projects whose DL
values ranked lower than the 50th percentile reported that theywere
experiencing severe maintenance difficulty. Of the eight projects,
other than Proj_EO and Proj_BM that are small and have high PC
and DL values, the other six project teams have decided, or have
already begun refactoring to address the problems presented in our
reports. The architects also expressed their willingness to leverage
DL and PC metrics to continuously measure (quarterly or even at
every release) the architecture of their projects. By tracking the
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variations of DL and PC values regularly, they believe that they
could monitor whether their architecture is improving or decaying.

Table 2: Data of each project’s DL and PC

DL Percentile PC Percentile #Files
Proj_EO 78% 85th 6% 85th 144
Proj_BM 77% 85th 2% 98th 371
Proj_CH 76% 81st 16% 54th 6,948
Proj_EP 72% 74th 7% 83th 1,541
Proj_SS 57% 49th 20% 45th 15,333
Proj_OP 57% 49th 21% 41th 7,754
Proj_CO 55% 43rd 17% 52th 491
Proj_EC 28% 5th 62% 2nd 4,125

5 ARCHITECTURE FLAW ANALYSIS
TheDL and PC scores only provide a coarse assessment of a project’s
overall modularity. But a development team needs to precisely de-
termine where and how the system should be improved. In [15], Mo
et al. formally defined a set of architecture design flaws4, shown to
be highly correlated with error-proneness and change-proneness.
We applied their flaw detector to the eight ABB projects, and cre-
ated an extension of the tool to calculate the maintenance costs
of each flaw, which we call the flaw cost calculator. We reported
the results to practitioners to see if this analysis could help them
pinpoint the file groups responsible for maintenance problems, to
visualize architecture flaws, and to make refactoring decisions. In
this section, we introduce the concept of architecture flaws, and
then report the flaws detected in ABB projects.

5.1 Six Types of Architecture Design Flaws
Mo et al. [15] first defined five types of architecture design flaws
that were repeatedly observed from many software systems, in-
cluding: 1) Unstable Interface, where an influential file changes
frequently with its dependents as recorded in the revision history;
2) Modularity Violation, where structurally decoupled modules fre-
quently change together; 3) Unhealthy Inheritance, where a base
class depends on its subclasses or a client class depends on both the
base class and one or more of its subclasses; 4) Cyclic Dependency or
Clique, where a group of files form a strongly connected graph; and
5) Package Cycle, where two packages depend on each other (rather
than forming a hierarchical structure, as it should). Their tool was
recently extended to detect a 6th type of flaw: 6) Crossing, where
a file with both high fan-in and high fan-out changed frequently
with its dependents and the files it depends on.

A system may have multiple instances of any flaw, and each can
be visualized as a DSM using existing tools, such as Titan [25]. As
exemplified in Figure 3, a DSM is a square matrix in which columns
and rows are labeled using the same set of files in the same order.
The annotations in each cell indicate the structural and evolutionary
relations between the file on the row and the file on the column.
For example, the cell in row 3, column 1, cell(r3,c1) contains “d, 14",
which means that path1.File3_cpp depends on path1.File1_cpp, and
they have changed together 14 times as recorded in the revision
history. Cells with numbers only indicate that there are no structural
dependencies between the files, but they were changed together.
Cells with letters only indicate that the file on the row syntactically
4Which are also called as “hotspots” or “issues”

depends on the file on the column, and they were not changed
together. The cells along the diagonal indicate self-dependency.
Figure 3 depicts two DSMs, each representing a flaw instance from
a ABB project. Figure 3a presents the DSM of an instance of Clique
(the actual files names are anonymized), which shows that there are
16 files in the Clique; changes to any one of them could influence
the other 15.

5.2 Architecture Flaws Detected in Practice
The flaw detector component, as depicted in Figure 1, automatically
detected the flaws within each project, and output a DSM file for
each flaw instance, which became the input of the flaw cost cal-
culator component that quantified the maintenance costs of each
flaw, so that the users could better prioritize and rank them. In this
component, four measures extracted from revision history were
used to quantify maintenance costs: 1) change frequency (CF)—the
number of commits a file is involved in; 2) change churn (CC)—the
number of lines of code (LOC) committed to make changes; 3) bug
frequency (BF)—the number of bug fixes a file is involved in; 4) bug
churn (BC)—the number of LOC committed for bug fixes. Not all
projects have all the data needed. If the commits of a project do not
link to issues, or issues were not categorized into bugs, features, etc.,
this component will only calculate CF and CC. Some legacy systems
do not keep records about the LOC changed in each commit. In
these cases, this component only calculates BF or CF. The output
generated by these two components has three parts:

(1) Flaw summary. As an example, Table 3 summarizes the flaws
detected in Proj_EP, their scopes and maintenance costs. The first
line shows that there are 322 files (21% of all the files) involved in
26 Clique instances. These files were changed 1,790 times involving
26,294 LOC, 41% of all the LOC changed in the revision history.
643 of the changes are for bug fixing, involving 16,557 LOC, which
is 45% of all the LOC spent for bug fixing. This table shows that
Cliques are very expensive to maintain in this project.

(2) Flaw costs. As an example, Table 4 shows that Clique1 in-
volves 99 files and incurred the most maintenance costs, definitely
worth attention. Clique5, although it contains just 16 files, also
appears to be very costly. Using this table, the development team
can prioritize which flaws need to be addressed in which order.
By comparing with system average bug and change rates, we can
see that files involved in these flaws are causing high maintenance
difficulty.

(3) Flaw DSM. For each instance of each flaw, the tool generated
a DSMwhich we exported as a spreadsheet so that the development
team could visualize the relevant structure. Figures 3a-3b present
the DSMs of several typical flaws that we reported to the architects,
together with their maintenance effort.

• Figure 3a shows a Clique where files are highly coupled by
cyclic dependencies. For example, path1.File1_cpp,
path1.File2_cpp, and path1.File3_cpp form two dependency
cycles, and these files changed together frequently.

• Figure 3b shows a Crossing, centered on path2.File2_h, which
depends on four files and influences eight other files. This
file changes frequently with all these 12 files, and ranked the
8th most error-prone (e.g., changed for bug fixes 11 times)
and change-prone among all 6,984 files in Proj_CH.
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Table 3: Architecture Flaws in Proj_EP
Pt. : Percentage; Flaw CF - BC : maintenance costs, quantified by CF, CC, BF and BC, of the files in each flaw

#Instances #Files Pt. Flaw CF Pt. Flaw CC Pt. Flaw BF Pt. Flaw BC Pt.
Clique 26 322 21% 1,790 28% 26,294 41% 643 34% 16,557 45%
Crossing 91 368 24% 3,146 50% 40,247 63% 1,051 55% 25,177 68%
ModularityViolation 667 588 38% 4,538 72% 46,224 72% 1,438 75% 27,648 74%
PackageCycle 175 499 32% 2,417 38% 29,906 47% 778 41% 18,889 51%
UnstableInterface 6 316 21% 1,669 26% 19,898 31% 388 20% 11,457 31%
UnhealthyInheritance 72 257 17% 1,528 24% 22,007 34% 480 25% 13,481 36%

Table 4: Maintenance Costs of Clique instances
Tot. CF - BC: the total CF - BC of all files in each clique instance

Instance Name Size Tot. CF Tot. CC Tot. BF Tot. BC
Clique1 99 226 7,847 112 4,673
Clique2 78 181 431 7 212
Clique3 28 181 1,686 49 897
Clique4 18 246 3,130 39 1,427
Clique5 16 168 3,553 89 2,662

(a) A Clique: highlighted cells form the dependency cycles.
Effort: Tot. CF: 456; Tot. CC:15,162; Tot. BF:116; Tot. BC:2,676.

(b) A Crossing: the cell in red is the Crossing file; Blue cells
show dependencies and their co-changes.

Effort: Tot. CF: 183; Tot. CC:13,179; Tot. BF:66; Tot. BC:2,936.

Figure 3: Example DSMs of Architecture Flaws
d: depend; number: co-changes

After submitting the report to the development teams, we also
conducted a telephone conference to review the results in case the
developers were not familiar with DSMs. During the presentation
and interaction, the development teams all commented that these
architecture flaws revealed key problems that they had suspected
but had no way to specify or quantify before.

6 ARCHITECTURE ROOT ANALYSIS
Unlike the flaw detectors that identify many file groups, the root
detector, as shown in Figure 1, generates 10 (or fewer) file groups
that typically capture the majority of a system’s most error-prone
files. Our objective is to assess whether root analysis can help de-
velopment teams pinpoint architectural problems more effectively.

6.1 Architecture Roots
Xiao et al. [24] proposed that software architecture can be mod-
eled as multiple overlapping design rule spaces (DRSpaces), each
containing an architecturally connected group of files. They also
define the top few DRSpaces that capture most error-prone files
as architecture roots (or roots for short). They have shown that five
roots can typically cover 50% to 90% of all the error-prone files in a
system, an observation validated over dozens of industrial and open
source software systems. The implication is that most error-prone
files are architecturally connected, and that the more error-prone
the files are, the more likely that they are architecturally connected
and that errors propagate through the connections.

A root can also be modeled using a DSM. Figure 4 presents
a root detected from one of the projects. This DSM reveals mul-
tiple architecture design flaws. For example: 1) p1.F1, an unsta-
ble interface, is depended upon by most of the files, and most of
these dependents changed together with it frequently; 2) Multiple
dependency cycles are identified, such as, p1.F5 ↔ p2.F2, and
p2.F2 → p2.F1 → p1.F6 → p1.F5 → p2.F2; 3) p1.F1 depends
on its child, which is Unhealthy Inheritance; 4) Many modularity
violations are highlighted in red: structurally independent modules
that have changed together frequently. We also showed the change
rate and ranking of each file in the first two columns of the DSM.
For example, the file “p4.F3" in row 26 was changed 361 times,
and ranked the most change-prone among all 2,403 changed files
in Proj_SS. In this root, 84% of the files ranked within top 10 per-
centile most change-prone, and 6 out of the 31 files ranked within
top 1 percentile, which indicates that this root is a real maintenance
hotspot.

6.2 Root Analysis in Practice
We use Proj_EP as an example to illustrate the roots detected in
these eight projects. In Proj_EP, the root detector detected 4 roots,
and generated the following data:

(1) The scope and cost of each root, as shown in Table 5. For
example, the first row shows that the first root involves 147 files.
These files were changed 1,109 times, consuming 13,487 LOC. Of
these changes, 414 were bug fixes involving 9,347 LOC. As we can
see from the table, even though a Root only covers a small portion
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Figure 4: DRH-Clustered Architecture Root
d: depend; i: inherit; CF: Change Frequency; Top: percentile rank

of the system, it is a hotspot where much maintenance effort was
spent.

Table 5: Data of each detected Architecture Root
%: percentage; Rt. CF - BC: the total CF - BC of all files in each root

Size (%) Rt. CF (%) Rt. CC (%) Rt. BF (%) Rt. BC (%)
root1 147 (10%) 1,109 (18%) 13,487 (21%) 414 (22%) 9,347 (25%)
root2 93 (6%) 1,050 (17%) 11,486 (18%) 452 (24%) 6,696 (18%)
root3 79 (5%) 601 (10%) 5,453 (9%) 183 (10%) 3,821 (10%)
root4 104 (7%) 486 (8%) 10,794 (17%) 166 (9%) 6,236 (17%)

(2) The cumulative data for all Roots. A file may participate in
more than one architecture root; that is, roots overlap with each
other. DV8 also calculates their cumulative data, as shown in Table 6.
In this table, “Size" means the number of distinct files in the first
n roots, where, n = 1, 2, ..., 4. The “%Size" column presents the
percentage of the root size compared with the total number of
files in the project. For example, “222" in the second row means
that root1 and root2 (the first 2 Roots) contain 222 distinct files,
which covers 14% of all files in the project. The “Coveraдe" column
presents the cumulative coverage of change-prone or bug-prone
files by these roots. The fourth row of this table indicates all these
4 roots contain only 24% of all the files in this project, but cover
55% of all change-prone files and 65% of all bug-prone files. Files
in each root are architecturally connected, hence it appears that
change-proneness or bug-proneness may be propagated among
these files.

Moreover, following the experience reported in [12], and consid-
ering each architecture root as a debt, we created the debt calculator
to compute the penalty incurred by these roots as the difference
between the actual maintenance effort spent and the expected main-
tenance effort spent on them. We use the average change/bug rate
of all the files in each project as the expected maintenance effort,
following [12]. The expected effort columns “ExtraCF "- “ExtraBC"
represent the cumulative maintenance penalty from the roots. For
example, “615" in the second row of “ExtraBF " column indicates
that the 222 files in root1 and root2 are involved in bug fixes 615

times more often than average files. The “Percentaдe" row presents
the percentage of the extra maintenance effort to whole project.
The last row indicates that, 28% of all the changes, 41% of all the
LOC spent, 40% of bug-fixing changes, and 47% of bug-fixing LOC
spent on the entire project are incurred (or penalties) by these roots.

Table 6: Cumulative Data of Architecture Roots (Proj_EP)

Coverage
Root Size % Size Change Bug
root1 147 10% 24% 29%
root2 222 14% 38% 52%
root3 263 17% 47% 57%
root4 364 24% 55% 65%

Penalty of Architecture Roots
Extra CF Extra CC Extra BF Extra BC

root1 612 8,450 263 6,418
root2 1,332 16,601 615 11,175
root3 1,687 19,570 724 13,552
root4 1,754 26,110 763 17,314

Percentage 28% 41% 40% 47%

We have observed consistent results from all eight projects, as
summarized in Table 7. Column “All Roots Tot . Size%" shows that,
for all the projects, their detected architecture roots contain 2% -
24% of all files in each project, but cover a much larger portion of the
project’s change-prone (37% - 68%) or bug-prone files (47% - 81%)
as shown in column “Tot .Coveraдe". Due to the lack of traceability
of the bugs, we did not conduct the bug-related analysis on the last
three projects. The “Penalty" columns show that, for all projects, a
large portion of maintenance effort spent on a project is generated
from the detected architecture roots.

As we will elaborate later, the feedback regarding the detected
roots was divided. Some teams found that roots can capture hotspots
more effectively than the flaw analysis since they only need to
examine a few file groups, but other teams found that the detected
roots can be distorted.

Table 7: Architecture Root Analysis results of all projects
Tot. Ext CF - BC %: showing the ratio of penalty from all roots in
each project to the total maintenance effort spent on the project

Project #Root All Roots Tot. Coverage
Tot. Size % Change Bug

Proj_CH 4 8% 53% 47%
Proj_CO 1 18% 59% 56%
Proj_EP 4 24% 55% 65%
Proj_OP 8 14% 51% 47%
Proj_EC 7 13% 46% 81%
Proj_SS 5 2% 63% -
Proj_BM 1 11% 37% -
Proj_EO 2 19% 68% -

Penalty Percentage (%) of all Architecture Roots
Tot. Ext CF % Tot. Ext CC % Tot. Ext BF % Tot. Ext. BC %

Proj_CH 53% 83% 64% 89%
Proj_CO 39% 56% 46% 62%
Proj_EP 28% 41% 40% 47%
Proj_OP 28% 43% 35% 45%
Proj_EC 9% 21% 11% 3%
Proj_SS 30% 59% - -
Proj_BM 35% 56% - -
Proj_EO 47% 68% - -

7 INTERVIEWS AND FEEDBACK
To better understand how the information presented by the analysis
framework was understood and used, we formulated a set of ques-
tions for the pilot participants to answer after they had reviewed
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the results. Participants were provided with the questions in ad-
vance of a telephone conference conducted to record their answers.
The questions were designed to follow the key deliverables of the
report, the metrics, architecture flaws, and architecture roots. We
posed the questions to five participants who represented one or
more of the 8 projects we analyzed. Three of the participants were
software architects and two were R&D managers. Our objective
was to explore how the development teams intended to react to
and use the report to improve their architecture quality. Next are
the questions and the summary of their responses:

Q1: What did the report reveal that you didn’t know about your
software? Prior to having this report, the participants had intuitive
understanding of their architectures. One of them commented: “We
understand intuitively how our code is structured." The DL and PC
scores were surprising for the architects of Proj_OP and Proj_SS,
who thought the report indicated their code was better than their
opinion of it. For Proj_OP, their maintenance effort was higher
than they thought the metrics indicated it should be. For Proj_SS,
some programming languages used in the project were not fully
supported by Understand, therefore the scores were better than
they should be due to missing elements.

Q2: Are the metrics useful for reflecting the architecture of your
software? All the participants commented that the report provided
them quantifiable results and actionable items to improve their
architecture, as well as a way to discuss the importance of refac-
toring their architecture with managers. For Proj_CH, the trend
of metrics between releases was useful to understand whether the
architecture was improving or degrading. For Proj_EC and Proj_SS,
the participant thought the scores were useful and would like to
run daily analyses to compare the variations of the scores over time.
The need for updated reports was also expressed by projects BM,
CO, and EP. Proj_EO had a very high DL and a low PC score, but
they still had more rework effort than expected as they attempted
to evolve their product, which indicates that metrics derived from
syntactical relations only may not be sufficient.

Q3: What did the architecture design flaws reveal about your soft-
ware? Proj_EO was surprised by their architecture design flaws
and found a few false-positives. All other projects reported that
the detected flaws confirmed what they intuitively knew about the
structure of their software, and made their intuitive knowledge
visualizable and quantifiable.

Q4: What actions have you planned as a result of the architecture
design flaws report? Six of the projects said they planned to per-
form refactoring to address the detected architecture design flaws.
Proj_BM and Proj_EO do not plan to refactor, and indeed their DL
and PC scores were high. The architect of Proj_CH commented that
the architecture flaw report provided them quantitative data to help
prioritize where to refactor the code. Proj_EC and Proj_SS, which
are already actively refactoring, desired more specific guidance
towards how they should refactor.

Q5: What did the architecture roots reveal about your software?
Proj_OP reported that roots in a particular component were unex-
pected, and probably indicated a higher amount of development
activity in normally stable code. The participant commented: “We
may have underestimated the risk of changing this part of the code."
For Proj_CH and Proj_OP, the architecture roots pointed to utility
files that should not be considered as roots of the structure. These

modules were used by many other components thus the analysis
considered them as roots. Proj_EC and Proj_SS found the files re-
ported as roots were expected because they contain definitions that
change frequently.

Q6: What actions do you plan to take to address architecture roots?
Proj_OP had a plan to componentize the architecture, which is
expected to address the roots and improve the metrics scores. They
commented: “We plan to monitor our progress in architecture decou-
pling using these metrics over time." Proj_EC and Proj_SS reported
being unsure about how to proceed with improving their architec-
ture roots and felt they lacked an accurate mental model of what
an architecture root is. Proj_CH expressed a similar sentiment be-
cause utility files were identified as roots and they did not fully
understand the purpose of root identification. By contrast, Proj_EP
confirmed that the detected roots are composed of defect-prone
files and they were planning to refactor them to improve quality.

8 ANSWERS TO RESEARCH QUESTIONS
We summarize the feedback provided by the development teams to
answer each research question below.

RQ1: does DV8 help to close the gap between management and de-
velopment? That is, does it help them to decide if, when, and where to
refactor? Three of the participants in charge of 5 projects (Proj_BM,
Proj_CO, Proj_EP, Proj_CH, and Proj_OP) verified that the infor-
mation provided was useful in closing the understanding gap with
management. Even though the other two participants didn’t ex-
plicitly comment on this aspect, the fact that six of eight projects
planned or had already begun refactoring their code to address the
flaws and roots suggests that our report played a role in reaching
these refactoring decisions.

RQ2: does DV8 help practitioners understand the maintainability
of their systems relative to other projects internal to the company, and
relative to a more broad-based benchmark suite? All the participants
said the report gave them quantifiable results with which to judge
their code base. Two were surprised on how good their products
were rated, that is, close to the 50th percentile within the industrial
benchmark, given their intuitive understanding of the maintenance
effort involved for their products. The comparison with industrial
benchmark makes it clear that maintenance difficulty caused by
degrading architecture is very common.

RQ3: does DV8 help developers pinpoint the hotspots of their
systems—that is, the groups of files with severe design flaws? Based
on the feedback from all 5 participants, the answer to this ques-
tion is clearly yes. Six of the eight projects planned to or already
started refactoring to address the detected flaws. The project with
the lowest DL score is undergoing a major rewrite. One practitioner
expressed the need for more detailed guidance on how to refactor
the detected flaws.

In summary, we can answer all three questions positively.

9 LESSONS LEARNED
In this section, we discuss the lessons learned in terms: the effec-
tiveness of these techniques, the data quality, and the limitations
that lead to future work.

Using DL and PC. The practitioners adopted DL and PC easily,
and expressed the need to compare multiple projects and analyze

786



Experiences Applying Automated Architecture Analysis Tool Suites ASE ’18, September 3–7, 2018, Montpellier, France

multiple releases of the same project using just a fewmetrics so that
they can monitor the quality of the architecture. We summarized
the following lessons regarding how DL and PC should be used in
a complementary way:

(1) If a system has a low DL and high PC score, it means that
maintenance difficulty is inevitable, and this conclusion is consis-
tent with the experience of practitioners: so far we have seen no
exceptions.

(2) If the DL and PC scores are both highly ranked, it means
the system is likely not experiencing severe problems. If the devel-
opment team is experiencing maintenance difficulty, this suggests
that the system has a large number of implicit dependencies. In this
case, architecture flaw detector should be executed to pinpoint the
problematic file groups.

(3) If the system has a highly ranked DL, but a much lower ranked
PC, such as Proj_CH where DL is ranked the 81st percentile, but
PC is only ranked the 54th percentile, it means that there could
be a small portion of the system that is highly coupled, which is
confirmed by the development team. This result implies that an
overall DL score only may not be able to reflect the existence of a
high-maintenance subsystem.

(4) If both scores are ranked medium, e.g. the DL of Proj_CO
ranked the 43rd and its PC ranked the 52nd, then the project is
likely experiencing maintenance difficulties already, as confirmed
by the development teams.

We have not observed a case where the system has a highly
ranked PC score, but its DL ranking is very low. Since PC is very
sensitive to the size of the project, as reported in [16], we suggest
that these two scores should be used together. Another lesson
is that a good DL and PC score does not necessarily mean that a
system is healthy. If the development team is experiencing difficulty
despite good scores, it is worthwhile to use flaw detectors to further
pinpoint where the difficulty comes from.

Using flaws and roots. In addition to quantifying flaws, visual-
ization of each flaw augments the intuition of developers, bridging
the gap between development and management. Currently we ex-
port flaw DSMs into spreadsheets, and mark the files involved in
each flaw manually. In the future, we will further automate this
process.

The experiences of root analysis are divided. Some teams like
the fact that using roots, they only need to inspect a few file groups,
and observe how most error-prone files are connected. Other teams
found that some roots are caused by high-impact utility files. Be-
cause these files have a large number of dependents, they can form
a large DRSpace that captures a large number of files, including
both error-prone and healthy ones, thus distorting the result. The
lesson here is that the high-impact utility files should be excluded
from this analysis.

We also learned that the pilot participants required comparison
reports which showed the evolution of a product between releases.
These reports were useful because the team could understand the
trend of whether their architecture was degrading or improving.
The report contained comparisons of the key metrics plus compar-
isons of the architecture flaws and which classes were involved in
architecture roots. We found some roots persisted between releases,
which means that they were a consistent source of development
effort across releases.

One comment: “Since the guidance of the report is towards refac-
toring, it makes sense that a release to release comparison would be a
useful way to integrate it into the software development life-cycle... I
would love to have this integrated into the daily build, with automatic
production of guidance to architects to help them with day to day
architectural governance."

Data quality. Another lesson was to consider multiple branches
when collecting history data. What the participants provided as
a known good source code branch frequently was a branch with
very few actual developer commits (they were mostly merges) thus
little history of each file could be collected. By considering multiple
branches for historical changes, we expanded the set of commits in
the analysis and had a more complete view of the history of each
file.

Of all the three types of analysis provided by DV8, the DL and
PC are structure metrics, calculated based on syntactic relations
only. Three architecture flaws require structural relations only:
Clique, Improper Inheritance, and Package Cycles. The other three
flaws, as well as root analysis rely on revision history data. If the
issue tracking data is available, issues can be categorized, e.g., into
bug-fixing, feature addition, etc., and each commit is linked with
an issue, then we can calculate both change related costs (change
frequency and change churn) and bug-related costs (bug churn and
bug frequency). If the issue tracking data is not available, or not
linked with commits, then we can only calculate change-related
costs.

Consistent with our observations with other industrial projects,
most of the comany’s projects do not have the data needed for all
analyses. Some projects have a long history, back to the time when
modern version control systems were not available. Other projects
used their own issue tracking systems that do not support issue
categorization. There are also projects in which the commits were
not linked to issues.

After talking to the development teams, we realized that in some
projects, the developers were not required to link commits with
issues since they didn’t envision the possible usage of the data. Now
that they have seen the benefits of these analyses, a more rigorous
management process was being discussed.

Limitations and FutureWork. The process of analyzing the 8
projects also revealed several limitations of DV8 and the underlying
technologies. First of all, the definition of certain architecture flaws
should be further refined. For example, the tool may detect a large
number of modularity violations (MV) that overlap with each other.
Sometimes the number of files involved in MV is so large that the
instances were just ignored all together. We are exploring the pos-
sible ways to further refine the definition of MV and its detection
algorithm to obtain more focused results. Second, based on the feed-
back we received about root analysis, we plan to further refine the
root detection methods so that utility files can be excluded. Third,
DV8 is limited to C, C++, C# and Java, the mainstream program-
ming languages that can be accurately processed by Understand .
Processing multi-language systems is a future direction of the tool
suite. Finally, we will further increase the number of projects in
the benchmark database so that the users can compare projects
with similar sizes and domains. Even though we have not observed
that DL is affected by these characteristics, PC can be significantly
affected by the number of files in the project.
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Findings with respect to the research questions have a threat to
external validity in that they are based on the opinions of only 5
practitioners and the set of practitioners is focused on architects
and managers not developers.

During this process, we have observed the need to further auto-
mate the process to enable the analysis of more complex code bases;
for example, a system may contain multiple components. Each com-
ponent should be analyzed individually, and the system should be
analyzed as a whole. We have worked to automate the analysis by
adding configuration management to the interim data and applying
scripts to automate the generation of report data. The practitioners
also suggested that they would like to know whether a product’s
DL and PC values have gotten worse over night. If so, they would
like to know how to locate the specific problem area. They envision
a visual diff of the DSM. Then they would need automated guidance
on what to change (which file and which refactoring) to repair the
situation before problems accumulate. So far, our analysis is at the
file level, one of the practitioners suggested that we could dig more
details at the method level. If so, they would like to know which
methods or attributes are responsible to the specific flaws or roots.

10 RELATEDWORK
In this section, we compared with the related work in the areas of
software metrics, defect prediction and technical debt.

Software Metrics. Numerous research has been conducted to mea-
sure software systems. McCabe [14] measures code complexity by
calculating the number of linearly independent paths in the source
code. Various metrics were proposed to measure OO projects, such
as C&K metrics[8] and MOOD Metrics [11]. Yu at. el’s [26–28]
proposed multiple coupling metrics and reported that they were
correlated to history changes, reuse effort and software perfor-
mance respectively. Bouwers et. al. [4] showed that the measuring
results from two architecture metrics [2, 3] matched practitioner’s
intuitions and could help in the decision-making process. There
is no substantial evidence showing that these metrics can be used
to effectively compare and contrast different projects or multiple
versions of the same project, and thus form an effective benchmark
to bridge the gap between management and development teams.
Sahraoui et. al. [20] presented a measurement program, MQL. Their
results showed that using MQL could significantly impact the qual-
ity of software systems, such as, maintainability, evolvability, code
complexity, etc. But they didn’t have a benchmark to follow and
didn’t clearly present how to guide the development teams for
further refactorings.

Defect prediction. Defect prediction has also been widely studied.
Code metrics, history measures or both were used for defect predic-
tion. Nagappan et al. [17] presented a combination of code metrics
used for defect prediction. However, they also reported that the
best combination of metrics varies in different projects. Selby and
Basili [22] presented that dependency structure is a good indicator
of software defects. Cataldo et al.’s [7] showed that the density
of change coupling is strongly correlated with failure proneness.
Ostrand et al. [19] demonstrated that a combination of file metrics
and file change history can be used to effectively predict defects. All
the above studies treat files individually in the analysis, not taking

architectural connections among files into consideration. By con-
trast, the root and flaw detection we applied can reveal architecture
problems that propagate errors among multiple files. Schwanke et.
at. [21] reported their experience of using structure dependency
and history measures to predict defects and detect architecture
issues, but their experience was based on one industrial case and
focused on the detection of molecularity violation. By contrast, we
report our experiences of applying software measurement, flaw
and root detection comprehensively.

Technical Debt Analysis. In the past decade, a number of heuris-
tics have been proposed to analyze technical debt [9] of software
systems. Kazman et. al. [12] presented their experience of using
economic models to assess the costs and benefits of refactoring soft-
ware architecture debts, in which they only reported the experience
from one system, without the application of DL/PC benchmark,
flaw detection, or the automated calculation of maintenance costs
of each flaw. Carriere et. al. [6] used a cost-benefit model to esti-
mate the effort and benefits of applying refactoring to decouple
the architecture. Their study only considered the coupling level of
architecture in one case, and it did not provide information about
when and where to refactor. Curtis et. al. [10] presented a model
to estimate technical debt principal in terms of cost which is deter-
mined by static analysis of source code. Nord et. al. [18] developed
a formula to assess the impact of technical debt in architecture,
and presented that their approach could be used to optimize the
long-term evolution of a product. These studies only reported infor-
mation for assessing technical debt, but didn’t report information
about where to refactor.

11 CONCLUSIONS
In this paper, we reported our experiences of applying three ar-
chitecture analysis techniques, supported by an automated tool
suite with 8 components, to 8 projects in ABB. Our experiences
demonstrated that: 1) DL and PC could effectively reflect the main-
tainability of a software project by comparing with a published
industrial benchmark; 2) architecture flaw analysis enables prac-
titioners to pinpoint and visualize severe design flaws, as well as
to quantify their maintenance costs, so that developers can tar-
get refactoring actions towards the most severe architecture flaws;
and 3) architecture root analysis could reveal how bug-prone and
change-prone files are connectedmore effectively. These techniques
and our tools have been adopted within ABB, we are now working
on integrating the three techniques into a deployable service that
can be used by all projects in the company. We will also create a
command line version of the tools, so that the key analyses, such as
DL and PC calculations, can be more easily integrated into existing
software quality control tools, such as SonarQube5. Our objective is
to measure projects with each build so that any quality degradation
can be detected immediately.
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